

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

IMPLEMENTATION OF A CONFIGURABLE FAULT
TOLERANT PROCESSOR (CFTP) USING INTERNAL

TRIPLE MODULAR REDUNDANCY (TMR)

by

Peter J. Majewicz

December 2005

 Thesis Co-advisors: Herschel H Loomis, Jr.
 Alan A. Ross

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2005

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Implementation of a Fault Tolerant Processor(CFTP)
using Internal Triple Modular Redundancy (TMR)

6. AUTHOR(S) Peter J. Majewicz

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
The environment of space is challenging to digital equipment due to the interaction between electrical systems and

the radiation of space. One such effect is the Single Event Upset (SEU), which occurs when radiation causes a logical bit value
to change. These effects are magnified in reconfigurable digital systems that utilize Field Programmable Gate Arrays (FPGA)
because both the configuration and the data are susceptible to SEUs.

 Several techniques have been developed in order to mitigate these effects. One such technique, called Triple
Modular Redundancy (TMR), is an architecture where three identical systems perform the same operation in parallel. The
three outputs are applied to a voter circuit which would eliminate an SEU caused error.

 This thesis develops a five-stage pipelined Reduced Instruction Set Computer (RISC) microprocessor. A TMR
architecture is then instantiated on an FPGA based circuit board. Instead of voting the processor outputs, the voting function is
distributed and votes the outputs of all the internal pipeline registers. Even in the event of an SEU caused error, correct data is
applied to the next pipeline stage. Finally this thesis describes and analyzes test data from radiation testing of the TMR system.

15. NUMBER OF
PAGES

109

14. SUBJECT TERMS
Field Programmable Gate Array (FPGA), FPGA testing, FPGA radiation testing, Single Event Upset
(SEU), Triple Modular Redundancy (TMR)

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

IMPLEMENTATION OF A CONFIGURABLE FAULT TOLERANT
PROCESSOR (CFTP) USING INTERNAL TRIPLE MODULAR REDUNDANCY

(TMR)

Peter J. Majewicz
Lieutenant, United States Naval Reserve

B.S., Old Dominion University, 1999

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 2005

Author: Peter J. Majewicz

Approved by: Herschel H. Loomis, Jr.

Thesis Co-advisor

Alan A. Ross
Thesis Co-advisor

Jeffrey B. Knorr
Chairman, Department of Electrical and Computer Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The environment of space is challenging to digital equipment due to the

interaction between electrical systems and the radiation of space. One such effect is the

Single Event Upset (SEU), which occurs when radiation causes a logical bit value to

change. These effects are magnified in reconfigurable digital systems that utilize Field

Programmable Gate Arrays (FPGA) because both the configuration and the data are

susceptible to SEUs.

Several techniques have been developed in order to mitigate these effects. One

such technique, called Triple Modular Redundancy (TMR), is an architecture where three

identical systems perform the same operation in parallel. The three outputs are applied to

a voter circuit which would eliminate an SEU caused error.

This thesis develops a five-stage pipelined Reduced Instruction Set Computer

(RISC) microprocessor. A TMR architecture is then instantiated on an FPGA based

circuit board. Instead of voting the processor outputs, the voting function is distributed

and votes the outputs of all the internal pipeline registers. Even in the event of an SEU

caused error, correct data is applied to the next pipeline stage. Finally this thesis

describes and analyzes test data from radiation testing of the TMR system.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. CFTP OBJECTIVE...1
B. PREVIOUS WORK...1

1. Lashomb’s Design ..1
2. Ebert’s Research ..2
3. Johnson’s Implementation ..2
4. Yuan’s System ..3

C. HARDWARE DEVELOPMENT...3
1. CFTP Experiment Board ..3
2. CFTP II Experiment Board ..5

D. CHAPTER SUMMARY..5

II. PIX PROCESSOR ...7
A. DESCRIPTION..7

1. Instruction Decoding ...7
a. Register Instruction Format ...8
b. Jump Instruction Format ...8
c. Immediate Instruction Format ...8
d. Not an Instruction...8

2. Basic Components..9
3. Pipelining ..10
4. Hazards ...13

a. Structural Hazards..13
b. Control Hazards ..14
c. Data Hazards...14

5. Dealing with Hazards in the Pix Processor......................................15
a. Data Forwarding...15
b. Hazard Unit ...16

B. PIX IMPLEMENTATION ...17
1. Instruction Fetch Phase...17
2. Instruction Decode (ID) Phase..19
3. Execution (EX) Phase ..20
4. Memory (MEM) and Write Back (WB) Phases23
5. Assembled Pix Components ..23

C. CHAPTER SUMMARY..26

III. TMR ARCHITECTURE...27
A. VOTING LOGIC...27
B. VOTING IN THE PIX – TMR ARCHITECTURE....................................30

1. Original TMR Design ..30
2. Pix Voting System ..30

a. Internal Voters ..30

 viii

b. Error Syndrome Decoding..32
c. FPGA Dependent TMR ..33

C. CHAPTER SUMMARY..36

IV. THE COMPLETE TMR SYSTEM ...37
A. PIX – TMR PROCESSOR..37
B. COMPLETE EXPERIMENT FPGA CIRCUIT ..38
C. MEMORY UNIT ...40

1. Test Program..40
2. Reliable Memory Unit ...42

D. CONTROL FPGA ...42
E. CHAPTER SUMMARY..43

V. RADIATION TEST OF PIX-TMR..45
A. PROTON RADIATION TEST...45
B. EXPECTED RESULTS ..46

1. No Effect Faults..46
2. Total Failure Faults ...46
3. TMR Mitigated Faults...47

C. TEST DATA REPORTS ANALYSIS..47
1. Test Data Section A..47
2. Test Data Section B..49
3. Test Data Section C..50
4. Test Data Section D..50

D. TEST DATA ANALYSIS..50
E. CHAPTER SUMMARY..51

VI. CONCLUSIONS AND RECOMMENDATIONS...53
A. SUMMARY ..53
B. CONCLUSIONS ..54
C. FOLLOW-ON RESEARCH...54

APPENDIX A: PIX INSTRUCTION SET..57

APPENDIX B: SCHEMATICS AND VHDL CODE..59
A PIX PROCESSOR ...59

1. IF Phase Combinatorial Logic (pc_cl.sch).......................................59
2. Program Counter Incrementor (PC_inc.vhd)................................59
3. Program Counter Multiplexer PC_mux.vhd)59

B.. IF/ID REGISTER (PC_IR_REG.SCH)...60
1. ID Phase Combinatorial Logic ...61

a. Branch Address Adder (br_addr_adder.vhd).........................61
b. Comparator (comparator.vhd)..62
c. Link Controller (link_control.vhd)...62
d. Main Controller (main_control.vhd)......................................63
e. Register File (regiser_file.sch) ...67

2. EX/MEM Phase Register ..68
3. EX Phase Combinatorial Logic ..68

 ix

a. ALU Control (alu_cntrl.vhd) ..68
b. ALU Shell (super_alu.vhd) ...70
c. ALU-32 bit (alu_32.vhd) ...71
d. Shifter (Shifter.sch)...72
e. Shift_8bit(Shift_8.vhd)..72
f. Overflow Circuit(zero_ovrflw.vhd.vhd)..................................73

4. EX Phase Combinatorial Logic ..73

APPENDIX C: CODE FOR DECODING ERROR SYNDROME..........................75

LIST OF REFERENCES..85

INITIAL DISTRIBUTION LIST ...87

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. CFTP Conceptual Diagram (From Ref. [3]) ..2
Figure 2. CFTP Printed Circuit Board...4
Figure 3. CFTP PCB Functional Block Diagram / Schematic ..4
Figure 4. NRL Experiment PCB with Virtex 2 FPGA..5
Figure 5. Basic Computer Components (From [2]) ..10
Figure 6. Processor with Pipeline Registers (After [5]) ..12
Figure 7. Control Lines for Final Three Phases (After [5])...13
Figure 8. Instruction Fetch Phase of Pix Processor...18
Figure 9. Instruction Decode Phase...19
Figure 10. Execution Phase Schematic ...21
Figure 11. Schematic of Pix Processor..24
Figure 12. Schematic of Pix with Major Components as Blocks......................................25
Figure 13. Single Bit Simple Voter ...27
Figure 14. Schematic of Simple Voter with Error Signal ...28
Figure 15. Schematic of Voter with Error Input Indication ..29
Figure 16. Traditional TMR Architecture (From [1]) ...30
Figure 17. Triple Pix Processors with Internal Voters ..31
Figure 18. Schematic of TMR Internal Phase Registers ...34
Figure 19. Schematic of Pix with Full TMR...35
Figure 20. Schematic of Pix – TMR..37
Figure 21. Complete Experiment FPGA Circuit ...39
Figure 22. FPGA Interface Data Flow Chart ..42
Figure 23. Pix-TMR FPGA Test Visualization...46
Figure 24. TMR With Triplicated Voters (After: [8])...55

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF TABLES

Table 1. Instruction Formats ..7
Table 2. Pix Instructions Listed by Type ...9
Table 3. Truth Table for Single Bit Voter..27
Table 4. Truth Table for Voter with Input Error Indication...28
Table 5. Voted Bits of each Processor Phase...32
Table 6. Error Syndrome Decoding ...32
Table 7. Signals of Pix – TMR ..38
Table 8. Experiment FPGA Signals...40

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

I would first like to thank my wife, Tina, and the children ,Amanda, Joey and
Peter for their never-ending support and providing a hiatus from the rigors of school.

Additionally, special thanks are owed to the following individuals for their

guidance and assistance.

To Professors Loomis and Ross for their continuing support and inspiration.

To Mindy Surratt whose tireless work brought the CFTP designs to life in

hardware.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

EXECUTIVE SUMMARY

The environment of space is challenging to digital equipment due to the

interaction between electrical systems and the radiation of space. The effect is manifested

by faulty operation of the equipment. If the circuit is a component of a vital system (i.e.,

life support or thruster control) the result can be catastrophic. Many specific effects have

been identified and are grouped into two main categories, Total Dose Effects and Single

Event Effects (SEE) [1]. Total dose effects result from the accumulated exposure to

radiation and typically produce the permanent degradation and eventual failure of a

component. These effects are typically prevented by the “radiation hardening” of the

component or by shielding it. Single Event Effects are more transient in nature and result

in a temporary change in an electrical signal. A subset of SEE’s is Single Event Upsets

(SEU), which occur when the incident radiation causes a logical bit value in a digital

circuit to change. The goal of the Configurable Fault Tolerant Processor (CFTP) Project

is to explore, develop and demonstrate the applicability of using off-the-shelf (COTS)

Field Programmable Gate Arrays (FPGA) in order to design digital processor based

systems that are resilient to SEUs.

Earlier research in the CFTP Program [1,2,3,4], developed a system which used

three soft-core instantiations of a 16 bit Reduced Instruction Set Computer (RISC)

processor and organized them in a technique known as Triple Modular Redundancy

(TMR). The outputs of the processors were compared using a majority voter, so that if a

fault occurs in one of the processors, only its output was affected and subsequently

“voted out” when compared to the correct outputs of the other two processors. The

correct signal is then applied to the destination (i.e. memory, output device). In order to

correct the actual bit affected by the SEU, the detection of an error triggered the

execution of an Interrupt Service Routine (ISR). The ISR first saved the contents of the

internal register block, called the register file, to memory utilizing the voter circuit, and

then wrote the corrected values back into the register file. At the conclusion of the ISR

the contents of the register file of each of the three processors was assumed to be

identical (free of errors). The originally running program resumed from a location based

 xviii

on the address where the error was originally discovered. In addition to detecting a

corrupted value, the voter also developed a coded output, named an Error Syndrome

which gave information regarding which output signal and which one of the three

processors contained the data affected by the SEU [4].

The original goal of this thesis was to continue the work previously mentioned.

The first task was to expand the processor capability to handle 32-bit data words and 32-

bit addresses. The goal was to implement a design similar to the format used in the five-

stage pipelined MIPS processor developed in [5]. To increase the throughput of the

processor, the design was to incorporate data forwarding and hazard avoidance. After

processor operation was verified, a voter circuit was to be developed. Finally, the TMR

architecture was to be assembled using three instantiations of the processor and the voter

circuit.

This thesis describes the details of the Pix processor developed for

implementation on the CFTP board. Additionally, the thesis describes a different voting

mechanism than was originally proposed by previous thesis work. By analyzing the

internal architecture of the processor, a system where the intermediate signals from each

of the stage registers are voted was implemented. The result is that if an SEU occurs in

one of these registers, a corrected output is automatically applied to the next stage

register. The benefit of this method is that data errors are corrected on-the-fly. The

running program can continue its execution without interruption. A secondary benefit

gained from the voter design is that since voters are spread through-out the internal

structure of the processor, more detailed information regarding the SEU is obtained. In

addition to the above indications from the Error Syndrome, information detailing the

phase of execution is also included.

This thesis also presents the issues involved with the actual programming and

testing of the Pix TMR system on the CFTP board FPGA. This includes an interface

circuit programmed into the second FPGA on the board which programs, initializes and

receives input from the Pix TMR system and relays that data (either Memory data or

Error Syndrome) to an output channel for monitoring. Testing of the Pix-TMR system is

composed of simulations, a configuration error injection software tool and actual

 xix

radiation testing performed at the Crocker Nuclear Laboratory, University of California at

Davis. The thesis concludes with a detailed analysis of the radiation test and

recommendations for future work. Topics discussed in the test data analysis include the

affect of an SEU on a configuration bit vice data bit, correlation between an upset of a

configuration bit and its manifestation as data errors, and determining the status of the

processor based on the Error Syndrome (if and when a reconfiguration is necessary).

 xx

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. CFTP OBJECTIVE
The objective of the CFTP Program at Naval Postgraduate School is to explore,

develop and demonstrate the applicability of using commercial-of-the-shelf (COTS) Field

Programmable Gate Arrays (FPGA) in the design of reconfigurable and reliable space-

based digital systems. The ability to reconfigure a design and the assurance of reliable

operation are paramount in the development of computer systems for space applications

because they grant unprecedented flexibility to the designing engineer. Utilizing

reconfigurable hardware allows the engineer to update a programmed circuit not only

during the space craft design process, but potentially through out the orbital life of the

system. As mission needs changes, the circuit configuration can be changed to maximize

effectiveness and efficiency. Traditionally, devices specifically fabricated to perform

reliably in a radiation environment have been used in system designs to ensure proper

operation. The penalty for using these devices was that as compared to the state-of-the-art

COTS alternative, cost and performance in terms of speed were sacrificed [2].

B. PREVIOUS WORK
Over a span of several years numerous students have contributed to the

development of the CFTP program. Their work involved all aspects necessary for a

successful program including research of the hazards in the space radiation environment,

available technologies to develop an FPGA based printed circuit board, and finally

research in the implementation of a reliable processor system. The following is a brief

description of accomplished work.

1. Lashomb’s Design

Peter A. Lashomb [1] described the basic components of a TMR system and their

implementation on an FPGA. Additional fault mitigation techniques such as hardware

redundancy, quadded logic and software redundancy were also discussed. The processor

used in the TMR design was the soft core 8 bit micro-controller KCPSM available free-

of-charge from Xilinx Corporation. The thesis included the design for the TMR structure,

voter logic and error encoders.

2

2. Ebert’s Research
Dean A. Ebert’s work [2] consisted of a detailed explanation of the space

radiation environment and their effects on electrical equipment. In pursuit of a

reconfigurable System-on-a Chip (SOC) design, he provided a description of different

available FPGA technologies, and all the required support components such as ROM and

RAM memories. Figure 1 depicts the conceptual diagram of the hardware components

and the TMR design used in the CFTP Program.

Figure 1. CFTP Conceptual Diagram (From Ref. [3])

Included in Ebert’s thesis is a complete description of the Department of Defense

(DoD) Space Test Program (STP) and all the required actions for academic institutions

like NPS to have the ability to launch their research experiments in space.

3. Johnson’s Implementation

Steven A. Johnson [3] concentrated his research in providing all the required

components for a complete TMR system. The processor used in his design was a

modified version of the 16 bit RICS DLX processor. His design included a state machine

for implementing an Interrupt Service Routine (ISR) to recover from a fault, an Error

Syndrome Storage Device (ESSD) to save the encoded Error Syndromes and a

3

Reconciler to provide a timing interface between the processor’s Harvard architecture

(separate buses for instruction and data memory) and off-chip memory’s Von Neumann

architecture (single bus). The system proposed by Johnson was based on theory.

Simulation and timing issues were left as future work.

4. Yuan’s System
Rong Yuan [5] implemented the system proposed by Johnson using Xilinx ISE

design software and simulated it using ModelSim® simulation software. The bulk of the

work was spent verifying the operation of the different components proposed in earlier

work and resolving timing issues discovered in simulation. Considerable work was

dedicated to the design and testing of the Renconciler which allowed the implementation

of both Instruction and Data memories using a memory system with only one physical

address and data bus, and the Interrupt mechanism which executed an ISR to reset the

contents of the internal register file to correct values using the voter circuit and resetting

the Program Counter to the value that it contained when the error was discovered.

C. HARDWARE DEVELOPMENT

1. CFTP Experiment Board
The result of the research was the production of the CFTP printed circuit board

shown in Figure 2. A functional block diagram showing all connections is illustrated in

Figure 3. The CTPF experiment board consists of 2 Virtex XQV-R600 SRAM FPGA’s, a

500 KB EE-PROM memory which contains the configuration code for the first FPGA, a

4 MB Flash memory which contains the configuration of the second FPGA and 128 MB

of SDRAM memory which can be used by the processor in the second FPGA. The first

FPGA is directly connected to a PC-104 bus and acts as an interface to the space craft

Command and Data Handler (C&DH). It is also directly connected to the other FPGA,

which will hold the TMR processor system. The first FPGA’s functions include

configuring, initializing and exchanging data with the second FPGA. In operation, the

first FPGA will monitor the operation of the circuit running on the second FPGA,

exchange data with it and initiate a reconfiguration of the second FPGA when necessary.

For these reasons, the first FPGA is referred to as the Control FPGA, and the FPGA

containing the TMR processor is referred to as the Experiment FPGA [6].

4

Figure 2. CFTP Printed Circuit Board

Figure 3. CFTP PCB Functional Block Diagram / Schematic

5

2. CFTP II Experiment Board
Concurrent research at Naval Research Laboratory (NRL), Washington DC, led to

the production of a very similar PCB, shown in Figure 4. The board has the same form-

factor and PC-104 bus interface. The major difference is that the Experiment FPGA is a

Virtex 2, and the board does not contain any SDRAM memory chips.

Figure 4. NRL Experiment PCB with Virtex 2 FPGA

D. CHAPTER SUMMARY

This chapter explained the main objective of the Configurable Fault Tolerant

Processor (CFTP) Program, which is to design an FPGA printed circuit board to develop

a fault tolerant processor system that will give engineers designing computer systems for

space applications a high degree of confidence of reliable system operation, the ability to

use COTS components in their circuit design and the ability to design their system

knowing that future system configuration changes are possible.

The chapter also briefly described the work done by previous students in the

CFTP Program. The work included research in the specific hazards and effects of the

space environment, the various components required in the development of an FPGA

based experiment PCB and finally a proposed TMR system.

The chapter ended with a description and gave illustrations of the actual PCB’s

produced by the CFTP Program and NRL for designing, implementing and testing the

TMR processor system.

6

The next chapter describes the first step in implementing the proposed TMR

system which is to expand the previously used KDLX processor to one that utilizes a 32-

bit bus for internal processing and interfacing with memory (address and data). Instead of

modifying the KDLX processor, the implementation commenced using an architecture

developed by John Hennessy and David Patterson [5]. The resulting processor is referred

to as Pix (Pete’s Intelligent Experiment).

7

II. PIX PROCESSOR

A. DESCRIPTION
The Pix processor is a five stage, pipelined, RISC microprocessor with 32-bit data

and address buses based on the MIPS microprocessor developed by John L. Hennessy

and David A. Patterson [5]. The basic components of the processor are coded in VHSIC

Hardware Description Language (VHDL). The components are then assembled together

as modules in either VHDL or by using a graphical schematic entry tool. The software

tool for the design and implementation of the Pix processor and its components is the

Xilinx ISE Project Navigator, version 6.2.02i. The instruction set implemented resembles

the instruction set of the MIPS 3000 architecture with the exception of instructions for

addressing data less than 32 bits (i.e. Load Byte, and Load Half Word), supervisory mode

instructions and floating point instructions. A complete listing of instructions, along

with explanations and assembly code syntax is provided as Appendix A.

1. Instruction Decoding
The MIPS microprocessor was designed with a structured format for decoding

instructions. To simplify the control and decoding circuits in the processor, all

instructions are the same length, 32 bits. Additionally, the six most-significant bits

(MSB), called the Operation Code (opcode) in every instruction indicate which one of

the three main categories the instruction belongs. Table 1 shows a graphical breakdown

of the three instruction types and the fields they contain. Table 2 lists all the Pix

Instructions by type. The main difference between the instructions of each category is in

the way that the remaining 26 bits are decoded.

Type: Bits:
 31 26 25 21 20 16 15 11 10 6 5 0
R opcode = 0 Rs Rt Rd shamt funct

J opcode target

I Opcode Rs Rt immediate

Table 1. Instruction Formats

8

a. Register Instruction Format
If the opcode bits are all zero, the instruction is a Register type instruction

(R Type). This instruction specifies three registers. Bits 25 through 21 and 20 through 16

specify the registers for the two source operands (Rs and Rt respectively), and bits 15

through 11 specify the destination register (Rd), where the result of the instruction is to

be stored. The specific R type instruction is determined by decoding the least significant

five bits of the instruction, known as the Function Field (funct). If the instruction is a

shift, bits 10 through 6 indicate the magnitude of the shift else they are unused.

b. Jump Instruction Format
If the value in the opcode is equal to 2 or 3, the instruction is in the Jump

format (J type). The lower 26 bits of this instruction specifies a target value used to

compute a jump address (the 6 most significant bits are obtained from the Program

Counter (PC).

It should be noted that the instruction set contains two Jump instructions

which are not of the J Type. Jump Register (JR) and Jump and Link Register (JALR)

both obtain their jump address from a register specified in the instruction. Therefore, they

are of type R, with their op code value equal to zero.

c. Immediate Instruction Format
If the opcode of a valid instruction is not equal to 0, 2 or 3, the instruction

is an Immediate type. This format specifies two registers. Bits 25 through 21 and 20

through 16 indicate the two operands used in the instruction. The 16 least significant bits

specify an immediate constant used in the operation.

d. Not an Instruction
In the event an instruction is not recognized, the main control inserts all

zeros as control signals. This is equivalent to a no operation (no-op or NOP) instruction.

It has no affect on the processor as it passes through the pipeline. Currently there is no

explicit indication to the user that an unrecognized instruction is encountered.

9

Type Instruction
Assembly

Code Type Instruction
Assembly

Code
R Type Add ADD I Type Add Immediate ADDI

Add unsigned ADDU Add Immediate unsigned ADDIU
AND AND AND Immediate ANDI
Jump and Link, Register JALR Branch if equal BEQ
Jump, Register JR Branch if equal to zero BGEZ
NOR NOR Branch if equal to zero and Link BGEZAL
OR OR Branch if greater than zero BGTZ
Shift Left, Logical SLL Branch if less than or equal to zero BLEZ
Shift Left, Logical, Variable SLLV Branch if less than zero BLTZ
Set if Less Than SLT Branch if less than zero and Link BLTZAL
Set if Less Than, Unsigned SLTU Branch if not equal BNE
Shift Right, Arithmetic SRA Load word LW
Shift Right, Arithmetic, Variable SRAV OR Immediate ORI
Shift Right, Logical SRL Set if Less Than, Immediate SLTI
Shift Right, Logical, Variable SRLV Set if Less Than, Immediate, Unsigned SLTIU
Subtract SUB Store word SW
Subtract unsigned SUBU XOR Immediate XORI
XOR XOR

J Type Jump J
Jump and Link JAL

Table 2. Pix Instructions Listed by Type

2. Basic Components
Figure 5 illustrates the basic components of the MIPS processor. Operation begins

with the Program Counter (PC), which contains the address of the instruction to be

fetched from Instruction Memory. This portion of the complete instruction execution is

referred to as the Instruction Fetch Phase (IF). The contents of the instruction are then

decoded to determine the operation to be performed and the location of the operands

required. This phase is termed the Instruction Decode Phase (ID). The values of the two

source registers are loaded into the Arithmetic and Logic Unit (ALU). The Execution

Phase (EX) is next, where the ALU executes the arithmetic or logical operation specified

by the instruction on the operands applied to its inputs. The Memory Phase (MEM) is

next in which a memory word is written to memory or retrieved from memory, depending

on the instruction. Finally, the result of the ALU operation or a retrieved memory word is

written to the specified destination register during the Write Back Phase (WB). It should

be noted that not all instructions require the actions of each phase. For example, a branch

instruction does not need to access memory or store a value back to a register.

The block labeled Registers in Figure 5 is an array of 32 registers and usually

referred to as the register file. In the Pix processor, each register is 32 bits wide. All

registers can be read from and written to except for Register 0, in which all 32 bits are

tied to ground, making the data value of Register 0 always equal to zero, regardless if a

10

data value is written to it. The data and control connections to the register file allow for

reading from two registers and writing to a single register simultaneously.

Figure 5. Basic Computer Components (From [2])

The amount of time (or the number of clock cycles) required to complete all of

the phases required for an instruction varies with different architectures. A Single-Cycle

architecture has all the phases completed in one clock cycle. A Multi-Cycle

implementation typically involves a state machine and executes only one phase per clock

cycle. Additionally, the state machine allots only the required number of clock cycles to

complete an instruction. Finally, a Pipelined architecture allots the same number of clock

cycles to every instruction (in the case of Pix 5 cycles/instruction) which allows the

execution of sequential instructions to be overlapped. The Pipelined Architecture is used

for implementing the Pix processor and will be explained in more detail in the following

section.

3. Pipelining
Pipelining is an implementation technique in which multiple instructions are

overlapped in execution so as to increase the total number of instructions executed per

unit time [5]. A common example used to describe the concept of pipelining is the chore

of washing several loads of dirty laundry. The task of washing a load of laundry can be

divided into five steps: (1) bring dirty clothes to the washing machine in a basket, (2)

wash clothes in washing machine, (3) dry clothes in dryer, (4) fold clothes and finally (5)

put clothes away. Suppose that there are enough dirty clothes for five loads and each step

11

takes 30 minutes. If load one is put through all the steps before the next load is started,

one load of laundry will take two hours and thirty minutes, and the entire five load chore

will take twelve hours and thirty minutes. But if when the first load is done with step one

and then the second load start the process, and all loads continue in the same manner, the

time to wash the first load will still take two hours and 30 minutes, but the entire five

load chore will take only four hours and thirty minutes to complete. In general, assuming

that there is always an item to put into the first step, the speedup due to pipelining is

equal to the number of stages in the pipeline [5]. Another way to visualize the efficient

operation of a pipelined processor is that after the first instruction completes its operation

on the fifth clock cycle, all ensuing instructions complete their operations every

subsequent clock cycle because of the overlapping execution.

The first step to implement a pipelined architecture is to place a register at the

transition boundary between phases. Figure 6 illustrates these locations. The primary

purpose of these registers is to maintain data that is required in the future phases. For

example, the destination register for an ADD instruction is decoded in the IF phase. The

data is not written to the destination register until the WB phase, three clock cycles later.

The five bits that represent the destination register must be stored in each phase register

until it is used in the WB phase.

12

IF
 P

ha
se

ID
 P

ha
se

EX
 P

ha
se

M
EM

 P
ha

se
W

B
Ph

as
e

Figure 6. Processor with Pipeline Registers (After [5])

13

An additional purpose for the phase registers is to store control data. As the

instruction is being decoded in the ID phase, a Control module determines what signals

are needed at that time and during the subsequent phases of execution. Examples of

control signals include: ALU control signals which determine what operation is going to

be performed, and select control signals for the multiplexers used throughout the

processor (only two shown in Figure 6 for simplicity). Figure 7 illustrates graphically

how the control signals are generated and then stored in successive registers until they are

needed. The Pix Control Unit will be discussed in more detail later.

Figure 7. Control Lines for Final Three Phases (After [5])

4. Hazards
In pipeline architectures, there are two frames of reference that must be tracked

when analyzing the internal operations. First is the number of clock cycles it takes to

complete an instruction. In the Pix processor, all instructions are allotted five clock cycles

for completion. The next frame of reference deals with the fact that during any single

clock cycle, up to five instructions may be involved in different phases of execution. This

can lead to problems for example, when the execution of one instruction relies on the

completion of a previous instruction (which hasn’t completed yet). These conditions are

referred to as hazards and include structural, control and data.

a. Structural Hazards
Structural hazards occur when hardware cannot support the required

actions of two instructions at the same time. Our use of the structured five stage

architecture proposed in [5] eliminates the vast majority of these hazards. The only

circumstance where structural hazards may be an issue is for memory access. The system

must support two independent accesses to memory; one for the instruction, the other for

ID Phase EX Phase MEM Phase WB Phase

14

data. In previous CFTP designs, this was accomplished using the Reconciler. In the Pix

implementation, a dual port RAM memory is instantiated on the FPGA allowing two

simultaneous accesses.

b. Control Hazards
Control hazards occur when the actions to be executed depend on the

result of a not-yet completed action. An example is a branch if the value in R1 is greater

than zero. The hazard arises from the fact that the determination of the value comes from

the ALU and is available in the MEM phase. If the branch is taken (new value for the PC)

then three improper instructions entered the pipeline. If the branch is not taken, then the

next three sequential instructions are the correct ones to execute. To minimize the affect

of having incorrect instructions starting execution, the Pix processor implements a

Comparator circuit in the ID stage which immediately determines if a branch should be

taken or not. If not taken, only one incorrect instruction enters the pipeline, and a Control

signals clears it.

c. Data Hazards
Data hazards occur when an action requires a data value which is the

result of a not-yet completed instruction. The following instruction sequence offers an

example. The syntax is such that the three registers are listed as:

[destination],[source],[source]. So line 1 adds register R2 to R1 and the sum is stored in

register R3.
1. ADD R3, R2, R1

2. ADD R5, R4, R3

The addition in line 2 assumes that the execution of line 1 is complete (value is saved in

R3). That is, the final value in R5 should be (R1 + R2) + R4. The problem is that the

value of R2 + R1 is not saved in R3 until two clock cycles later, which is after the two

values for the second instruction enter the ALU. This problem can be solved by either

stalling the second instruction until the first one is finished, or by designing a forwarding

network which forwards the result from the first instruction as soon as it is available and

applies that value into the corresponding ALU input. The Pix processor uses a forwarding

network which will be described in more detail. There is a situation in which forwarding

15

does not work. If a value is required from memory, the instruction must wait until phase

four (MEM) for that value to be used. In this case, a stall will be inserted into the

pipeline.

5. Dealing with Hazards in the Pix Processor
Control and Data Hazards are handled by one of two modules, either the

Forwarding Unit or the Hazard Unit.

a. Data Forwarding
The fwd_unit is the module in the ID phase that determines if a data

hazard exists and the proper action to take. Data hazards generally apply only to the input

values of the ALU, with the exception of a memory transfer, discussed shortly.

Referencing the example addition code above, to obtain the correct value, the addition

corresponding to line 2 can be stalled for two clock cycles, or the value of R2 + R1 can

be forwarded to the input of the ALU in time for the addition corresponding to line 2.

The following VHDL code is used to implement the logic of the fwd_unit.

The first section of code (lines 1-3) relates to a memory transfer situation where a data

value is retrieved and saved to a register, then immediately saved back to memory,

usually to a different address. Line 1 tests to see if the instruction in the WB phase is

writing a value to a register that has recently been retrieved from memory, and if the

instruction in the MEM phase is an instruction to save a value to memory. Line 2 tests to

see if the two registers used are the same. If they are, then the output Fwd_C is asserted.

This output is the select input to a multiplexer which forwards the newly retrieved value

from the WB phase to the MEM phase to be written back into memory.
-- SW after LW using same register (mem-to-mem Xfer)

1. if (MEM_WB_Mem2Reg = '1') AND (EX_MEM_MemWrite = '1')
2. AND (MEM_WB_Rd = EX_MEM_Rd) then Fwd_C <= '1';
3. end if;

-- Rs Register

 -- ID Hazard
4. if (ID_EX_RegWrite = '1') AND (ID_EX_Rd /= "00000")
5. AND (ID_EX_Rd = IF_ID_Rs) then Fwd_A <= "01";

 -- EX Hazard
6. elsif (EX_MEM_RegWrite = '1') AND (EX_MEM_Rd /= "00000")
7. AND (EX_MEM_Rd = IF_ID_Rs) then Fwd_A <= "10";

 -- MEM Hazard
8. elsif (MEM_WB_RegWrite = '1') AND (MEM_WB_Rd /= "00000")
9. AND (MEM_WB_Rd = IF_ID_Rs) then Fwd_A <= "11";
10. end if;

-- Rt register

 -- ID Hazard
11. if (ID_EX_RegWrite = '1') AND (ID_EX_Rd /= "00000")

16

12. AND (ID_EX_Rd = IF_ID_Rt) then Fwd_B <= "01";
 -- EX Hazard

13. elsif (EX_MEM_RegWrite = '1') AND (EX_MEM_Rd /= "00000")
14. AND ((EX_MEM_Rd = IF_ID_Rt) OR EX_MEM_Rd = ID_EX_Rt)
15. then Fwd_B <= "10";

 -- MEM Hazard
16. elsif (MEM_WB_RegWrite = '1') AND (MEM_WB_Rd /= "00000")

 AND (MEM_WB_Rd = IF_ID_Rt) then Fwd_B <= "11";

17. end if;

In the second section of code (lines 4-10), the instructions in the ID, EX,

MEM are checked to see if they involve writing a value to a register. If they do, the

register number is compared to see if it matched the register number Rs for the

instruction currently in the Instruction Register (IR). If there is a match, the value that

will be written to the register is forwarded to ALU through a multiplexer. The instruction

in the WB phase is not checked because its value will be saved in time for the instruction

in the IR to use. The order of checking phases is important in this situation. If a match

exists with the value in the ID phase, its value is used since it will be the most up-to-date.

The check to see if a register number is equal to zero is done because if any value is

written to R0, the value in R0 remains equal to zero.

The third section of code (lines 11-17) consists of the same checks as the

second section except they compare the values to the Rt register specified by the

instruction in the IR.

b. Hazard Unit
The hazard_unit module determines if the processor needs to be stalled.

The Pix processor was implemented so that only one situation necessitates a stall, that is

if one instruction loads a data value from memory and the very next instruction uses that

value for anything other than a load to memory. In this situation, the data value is

retrieved from memory in the MEM phase of the first instruction. The value is needed in

the ID phase of the next instruction. Since the value is not yet retrieved from memory, it

cannot be forwarded to the ID phase. The second instruction must be stalled. This is

accomplished by nullifying the second instruction (currently in the IR) by clearing the

control bits in the IF/ID Register and reloading the same instruction into the IR during the

following clock cycle. The original instructions in the EX, MEM, and WB continue

unhampered, so the value needed by the instruction becomes available. The following

section of VHDL code is from the hazard_unit module. The first three lines apply an

17

external stall signal to the processor. Lines 4 and 5 test to see if the condition for a stall is

met. Both the Rs and Rt registers in the IF/ID register need to be checked. If conditions

warrant, the following outputs are asserted: Stall_PC, so the PC is not incremented,

Stall_IF_ID, to disable the IR so that the current instruction (#2 from example) is not

overwritten, and IF_Flush, to clear the control bits of the stalled instruction. The effect is

that the second instruction is once again present in the ID phase, this time with an

available data value. Stalling the instruction is also known as inserting a bubble into the

pipeline [2].

 1. if Stall_in = '1' then -- external input to STALL processor
 2. Stall_PC <= '1'; -- disables loading of new PC value
 3. Stall_IF_ID <= '1'; -- disables loading of new instruction

 -- Load Instruction -- Following Store Instruction not Hazard
 4. elsif (ID_EX_MemRead = '1') AND (IF_ID_MemWrite = '0')

 -- next instruction uses Reg being loaded
 5. AND ((ID_EX_Rt = IF_ID_Rs) OR (ID_EX_Rt = IF_ID_Rt)) then

 6. Stall_PC <= '1'; -- disables loading of new PC value
 7. Stall_IF_ID <= '1'; -- disables loading of new instruction
 8. ID_Flush <= '1'; -- control signals cleared -> NOP inserted
 9. end if;

B. PIX IMPLEMENTATION
The following sections will describe the implementation of the Pix processor by

phase.

1. Instruction Fetch Phase
As discussed earlier, the IF phase is when the instruction pointed to by the PC is

fetched from the Instruction Memory. Figure 8 is a schematic of the components which

compose the IF phase.

18

Input: Interrupt

PC MUX

Interrupt
Address
Register

PC Incrementer

Output: INC_PC

PROGRAM COUNTER (PC)

Output: PC

EXCEPTION PROGRAM
COUNTER (EPC)

Input: Clock

Input: Reset

Input: Stall_PC

Input: Jump Select

Input: Branch Select Input: Branch Address
Input: Jump Address

Figure 8. Instruction Fetch Phase of Pix Processor

The Program Counter is a 32-bit register which is used to hold the address of the

instruction being fetched from memory. During normal operation, instructions are fetched

sequentially by having the value in the PC incremented, pass through the PC MUX and

loaded back into the PC at the next clock edge. The PC MUX module allows four

different sources to become the value loaded in the PC; allowing for non-sequential

instruction execution. A second source for the PC is a branch address. If the Branch

Select input is asserted, the MUX will forward the branch address input to the PC. A

similar action results if the Jump Select input is asserted, only a Jump address is

forwarded to the PC. The last source for the PC is the address from the Interrupt Address

Register which will make the PC point to the first instruction of an Interrupt Service

Routine (ISR). The select logic for the PC MUX is designed so that if the Interrupt select

input is asserted, it has priority over the other inputs. The Exception PC holds the value

19

of the PC and is used to determine the address of an instruction which causes an

Exception. Finally, the incremented PC value is an output of the IF stage and applied to

the IF/ID register. This value is used to calculate branch addresses in the ID phase, so it

must be stored for future use. As mentioned earlier, the PC output signal is applied to the

Instruction Memory.

2. Instruction Decode (ID) Phase
The Instruction Decode phase is the portion of execution where the instruction in

the IF/ID register is broken up into its individual fields and decoded. The following is a

schematic of the Instruction Decode Phase.

BRANCH CONTROL

MAIN CONTROL

BRANCH ADDRESS
GENERATOR

COMPARATOR

FORWARDING MUX’s

FORWARDING UNIT

JUMP ADDRESS
GENERATOR

REGISTER FILE

HAZARD UNIT

JUMP MUX

SIGN EXTENDER

LINK CONTROL

LINK MUX

Figure 9. Instruction Decode Phase

The key element of the ID phase is the Main Control Unit (MCU). It interprets the

fields of the current instruction to determine the current operation. As discussed earlier, it

20

generates the appropriate control signals and forwards them to ID/MEM register. If the

current instruction is a branch, it will specify the type of branch to the Branch Control

Unit (BCU). The BCU will then take the signal from the Comparator which gives relative

information on the two inputs to the ALU, and initiate a branch if necessary. For

example, if the MCU asserts the Branch if Equal (BEQ) signal to the BCU and the

Comparator asserts the A_equal_B signal, the BCU asserts the Branch_PC output. The

result is that the branch address generated by the Branch Address Generator (BAG) is

applied to the PC MUX back in the IF Phase. The Branch_PC output is applied as the

select input to the PC MUX so that the branch address is loaded into the PC at the next

clock edge. The branch address is computed by taking the lower sixteen bits of the

current instruction (referred to as an offset value) sign extending them to 32 bits, then

adding it the stored PC value. The MCU also determines if the instruction is a Jump.

Since Jumps are unconditional, the Comparator is not used. If determined to be a Jump,

the MCU will send a select signal to the PC MUX so that the Jump address is loaded into

the PC. The JUMP MUX determines which of the three types of Jump addresses is sent

to the PC MUX. For a standard Jump instruction, the address is the output of the Jump

Address Generator (JAG), which concatenates the 26 lower bits of the instruction and the

six most significant bits of the PC. If the instruction is a Jump Register, the Jump address

is the value in the register specified in the instruction. If the instruction is a Return from

Exception, the Jump address is the value in the Exception PC. Finally the MCU must

determine if a Jump or Branch instruction is also a Link instruction. If it is, the PC value

from the IF/ID Register is saved in a register in the Register File designated in the

instruction. If no register is specified, Register 31 is used as a default. The Link Control

module determines what the correct destination register is. The Link MUX forwards the

PC value to the MEM stage so that it will eventually be written in the Register File

during the WB phase.

The Forwarding Unit, Hazard Unit, and Register File reside in the IF phase and

have been previously described.

3. Execution (EX) Phase
The Execution phase is where the arithmetic and logical operations take place.

The result of the operation could be a value to be stored in a register or could be the

21

effective address for a memory read or write operation. Figure 12 is a schematic showing

the components of the EX phase.

ALU

ALU Control

MUX B

MUX A

Control signal

ALU Input A

Input B
Imm Val

Shift amount

Dest Reg

Control Lines

ALU Output
Over Flow

Imm Val
Dest Reg for WB

Dest Reg for Hazard Unit

Figure 10. Execution Phase Schematic

The combinatorial logic that performs the mathematical and logical operation is

contained in the Arithmetic and Logic Unit (ALU). The specific operation performed by

the ALU is determined by the ALU Control module. It receives input from two sources.

The first is a three bit control word generated by the Main Control module in the ID

phase. ALU Control module first decodes this input to determine what operation the ALU

is to perform. In case of an R type instruction, the ALU Control module must then decode

the six bits of the Function Field (its other input) to determine the operation. The VHDL

code for the ALU Control module is shown below. Lines 1 through 10 form the first case

statement which decodes the three bit ALU Operation input and determines what the

corresponding output should be. In the case when the input is equal to 010 (line 10), the

ALU control module must then decode the six bits of the Function Field which is coded

in the second case statement, lines 11 through 35.

22

1. case ALU_Op is
2. when "000" => ADD <= '1'; -- ADD for LW, SW, ADDI or ADDIU instr
3. when "001" => SUB <= '1'; -- SUB for Branch
4. when "011" => ADD <= '1';
5. Signed <= '1'; -- allow Over Flow
6. when "100" => ANDc <= '1'; -- ANDI instr
7. when "101" => ORc <= '1'; -- ORI instr
8. when "110" => XORc <= '1'; -- XORI instr
9. when "111" => SLT <= '1'; -- SLTI or SLTIU instr
10. when "010" => -- R type instr =>
11. case Funct_Fld is -- look at Function Field
12. when "100000" => ADD <= '1'; -- 32
13. Signed <= '1'; -- allow Over Flow
14. when "100001" => ADD <= '1'; -- 33 ADDU
15. when "100010" => SUB <= '1'; -- 34
16. Signed <= '1'; -- allow Over Flow
17. when "100011" => SUB <= '1'; -- 35 SUBU
18. when "100100" => ANDc <= '1'; -- 36
19. when "100101" => ORc <= '1'; -- 37
20. when "100110" => XORc <= '1'; -- 38
21. when "100111" => NORc <= '1'; -- 39
22. when "101011" => SLT <= '1'; -- 42
23. when "101010" => SLT <= '1'; -- 43 SLTU
24. when "000000" => Lft_Shft <= '1'; -- 00
25. Shift <= '1';
26. when "000010" => Shift <= '1'; -- 02
27. when "000011" => Arith_Shft <= '1'; -- 03
28. Shift <= '1';
29. when "000100" => Lft_Shft <= '1'; -- 04
30. Shift <= '1';
31. when "000110" => Shift <= '1'; -- 06
32. when "000111" => Arith_Shft <= '1'; -- 07
33. Shift <= '1';
34. when others => null;
35. end case;
36. when others => null;
37. end case;

MUX A determines what value is applied to the second input of the ALU. The

possible value is either from the register specified in the instruction (R type instruction)

or a 16 bit immediate value from the instruction (I type) that has been extended to 32 bits.

For arithmetic values the extension preserves the sign of the 16 bit value, for a logical

operation, the value is extended with zeroes.

MUX B applies the correct value for the destination register to be forwarded to

the MEM and WB stages. For R type instructions, the destination register is determined

by decoding bits 15 through 11 of the instruction. For I type instructions, the register

value is in bits 20 through 16. The select signal is generated by the Main Control in the

ID phase and stored in the ID/EX register.

The top three lines of the schematic represent five bits of control data which are

not used in the EX phase, but forwarded to the MEM or ID phases. Of the five bits, one

23

bit is applied to the ID phase to the fwd_unit, and four bits are stored in the EX/MEM

register (two as control bits for the MEM phase and two for the WB phase).

The 32-bit output Imm Val is the value which will be written to memory if the

instruction is a store word (SW). This value comes directly from the register file or from

the forwarding network. The architecture does not allow for the output of the ALU to be

written directly to memory. For a SW or load word (LW), the value out of the ALU is the

effective address used by the memory instruction.

Detailed schematics and VHDL module code are provided in Appendix B.

4. Memory (MEM) and Write Back (WB) Phases
There is very little logic included in the MEM and WB phases. As the name

implies, the MEM phase is where the processor interfaces with data memory. The two

control signals consist of a Write and Read signal and control the operation being

executed. One MUX is contained in the MEM phase that allows the immediate writing of

a memory data word previously retrieved from memory, back to memory (usually to a

different address). A second MUX is used to take one of the two sources destined to be

stored during the WB phase and forward it to the fwd_unit. The WB phase is the final

phase of execution for most instructions. Data that has been processed in the ALU or

retrieved from memory is applied to the register file for storing in the destination register

specified in the instruction.

5. Assembled Pix Components
Figures 11 and 12 are schematics of the complete Pix processor. Figure x shows

the individual modules represented as blocks. Each block in the diagram was

implemented in VHDL. The Xilinx ISE design allows the representation of a module as a

block, which can then be inserted in another schematic. To form a simplified version of

the Pix processor, all the components of each phase were then grouped together and made

into a schematic block. Figure y is logically the same circuit, but with major components

shown as blocks.

24

IF
/ID

R
eg

is
te

r
ID

/E
X

R
eg

is
te

r
E

X
/M

E
M

R
eg

is
te

r
M

E
M

/W
B

R
eg

is
te

r

IF
 P

ha
se

ID
 P

ha
se

E
X

 P
ha

se
M

E
M

 P
ha

se

WB Phase

Figure 11. Schematic of Pix Processor

25

IF
 P

ha
se

In
st

ru
ct

io
n

M
em

or
y

IF
/ID

R

eg
is

te
r

ID
 P

ha
se

ID
/E

X
R

eg
is

te
r

E
X

P
ha

se

E
X

/M
E

M

R
eg

is
te

r
M

E
M

P

ha
se

D
at

a
M

em
or

y

E
X/

W
B

R

eg
is

te
r

W
B

P
ha

se

Figure 12. Schematic of Pix with Major Components as Blocks

26

C. CHAPTER SUMMARY
This chapter has explained the implementation of the five-phase pipelined Pix

processor developed for used in the TMR system. Detailed descriptions of the fetch,

decode, execution, memory and write back phases were included for both a generic

processor and for the Pix processor. All schematics and VHDL codes pertaining to the

Pix processor are contained in Appendix B.

The next chapter begins with an explanation of a simple voting circuit and quickly

expands the design to describe the complete TMR system incorporating three copies of

the Pix processor. The initial design developed in [4] is briefly mentioned to differentiate

the design developed in this thesis.

27

III. TMR ARCHITECTURE

A. VOTING LOGIC
The key element in any TMR architecture is the voter. It is a circuit composed of

combinatorial logic which implements a majority function. The circuit has three inputs,

which are assumed to be the outputs of three identical circuits that provide the same

value. During normal operation the outputs of these three identical circuits will match. If

a fault occurs in one of them, its output may change. The voter compares the three inputs

and produces an output which is equal to the input value in the majority. Figure 13 shows

a schematic for a simple one-bit voter circuit. Table 3 is a truth table showing the output

of the voter circuit for every combination of inputs.

Figure 13. Single Bit Simple Voter

A B C T_OUT
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 1 1

Table 3. Truth Table for Single Bit Voter

The circuit shown in Figure 14 can be easily expanded in order to provide an

indication of an error occurring. Three input AND and three-input NOR gates are used to

28

determine if there is a mismatch among the inputs. If there is, the ERR output is asserted.

This signal can then be used to initiate an error routine or similar action. A schematic for

this circuit is shown in Figure 14.

Figure 14. Schematic of Simple Voter with Error Signal

One final expansion is made to the Voter circuit used in the Pix TMR

architecture. Additional logic is added to the circuit in Figure 15 to provide an indication

of which input did not match the other two. Table 5 shows a truth table for the Voter

circuit with four outputs. One is the voted output representing the input in majority, and

the other three give indication of which input contained the mismatch. Figure 16

provides a schematic of this Voter circuit.

A B C T_OUT A_ERR B_ERR C_ERR
0 0 0 0 0 0 0
0 0 1 0 0 0 1
0 1 0 0 0 1 0
0 1 1 1 1 0 0
1 0 0 0 1 0 0
1 0 1 1 0 1 0
1 1 1 1 0 0 0

Table 4. Truth Table for Voter with Input Error Indication

29

Figure 15. Schematic of Voter with Error Input Indication

The following code is a VHDL implementation of the one bit Voter shown in

Figure 16. Lines 1 through 9 equate to the three XOR gates of the schematic. The

remaining lines equate to the other AND gates and apply the corresponding signals to the

outputs. Two new outputs are developed. The first specifies which bit of a multi-bit voter

contains the error. This section of code is from bit 0. The Voter_err output is connected

using a multi-input OR gate to the other Voter_err outputs from the other bits in the voter

in order to give an indication that somewhere in the voter an error was detected.
1. if A_in(0) /= B_in(0) then
2. AB_err(0) := '1';
3. end if;
4. if A_in(0) /= C_in(0) then
5. AC_err(0) := '1';
6. end if;
7. if B_in(0) /= C_in(0) then
8. BC_err(0) := '1';
9. end if;
10. if (AB_err(0) = '1' AND AC_err(0) = '1') then
11. Voter_err <='1';
12. A_err <= '1';
13. Err(0) <= '1';
14. True_out(0) <= B_in(0);
15. elsif (AB_err(0) = '1' AND BC_err(0) = '1') then
16. Voter_err <='1';
17. B_err <= '1';
18. Err(0) <= '1';
19. True_out(0) <= A_in(0);
20. elsif (BC_err(0) = '1' AND AC_err(0) = '1') then
21. Voter_err <='1';
22. C_err <= '1';
23. Err(0) <= '1';
24. True_out(0) <= B_in(0);
25. else
26. True_out(0) <= B_in(0);
27. end if;

30

B. VOTING IN THE PIX – TMR ARCHITECTURE

1. Original TMR Design
The TMR architecture proposed by Lashomb [1] is depicted in Figure 17. The

voter system reads the output of each processor during operations that interact with

memory. Signals that are monitored by the voter are the PC, Write and Read commands,

data address (for memory reads and writes) and the data itself for memory writes.

µP

EDACµP

µP

voter

m
em

ory

I/O
Status

µP

EDACµP

µP

voter

m
em

ory
m

em
ory

I/O
Status

Figure 16. Traditional TMR Architecture (From [1])

In the event of an error, the processors would all simultaneously enter an Interrupt

Service Routine which contained instructions for the processors to store each of the

registers in the register file and then load the values back into the original registers. The

operation of storing the values to memory utilized the voting circuits so that corrected

data was used. At the end of the ISR, a jump instruction was inserted which allowed the

PC to resume program fetching at the point the error was detected The event of detecting

an error also triggered the generation of an Error Syndrome, which stored the PC value

when the error was detected, the data address and a sequence of 102 bits from which the

faulty processor and bit was determined.

2. Pix Voting System

a. Internal Voters
The TMR architecture designed in this thesis deviated from the design

proposed in previous work. Instead of placing the voters externally, limiting their actions

31

to accesses to memory, the voting function with the Pix processor is distributed, with

voters placed internal to the processors. Voters monitor the outputs of all internal phase

registers before the signals are applied to the combinatorial logic included in the

respective phase. The result is that if an error occurs to the data in an internal phase

register, the affect is immediately rectified, as corrected data is applied to the rest of the

circuit via a voter. A direct benefit is that the processor does not have to enter an interrupt

service routine in order to return to proper operation. The exception is if a fault occurs to

a value stored in the register file in one of the processors. Although a voter would correct

the value as it is forwarded to the EX phase, the original data stored in the register would

still be faulty. The chance that an error could occur to the same bit of the same register in

two different processors would increase. This could eventually violate the premise for

using the voter circuit, which is that the value in the majority is assumed to be correct. A

circuit that would stall the processor and immediately write the correct value back to the

register could be added. Figure 17 shows a block diagram of the placement of the voters.

Figure 17. Triple Pix Processors with Internal Voters

32

A voter takes the same inputs from each phase register and determines

what the correct out should be. This output is them applied to the combinatorial logic of

the next stage. In Figure 17 the verified values from registers Value A and Value B are

voted, and the output is applied to the ALU. If an error is detected by a voter, an Error

Syndrome is also produced. Table 5 shows the total number of bits that are voted after

each phase of the processor. As shown, the complete Pix TMR architecture votes 984

bits.

Register Bits
IF/ID 64
ID/EX 120
EX/MEM 73
MEM/WB 71
Total (1) Pix 328
Total (3) Pix 984

Table 5. Voted Bits of each Processor Phase

b. Error Syndrome Decoding
In order to facilitate communicating the Error Syndrome between the

Experiment FPGA and the Control FPGA on the CFTP circuit board, the Error Syndrome

was limited to 32 bits (the width of the data bus).

28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Pix STAGE VOTER BIT

ID STAGE A B C 0 0 0 1 12 11 10 9 8 7 6 5 4 3 2 1 9 8 7 6 5 4 3 2 1 0

EX STAGE A B C 0 0 1 0 12 11 10 9 8 7 6 5 4 3 2 1 9 8 7 6 5 4 3 2 1 0

MEM STAGE A B C 0 1 0 0 8 7 6 5 4 3 2 1 9 8 7 6 5 4 3 2 1 0

WB STAGE A B C 1 0 0 0 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1 0
Table 6. Error Syndrome Decoding

The coding that was implemented allowed the Error Syndrome to be

reduced to 29 bits. Bits 28 through 26 represent the processor that contains the error. The

next four bits, 25 through 22, indicate the phase in the processor in which the error

resides. Finally, bits 21 through zero indicate which bit of the phase is in error. The

largest number of voted bits in one phase is from the output of the ID/EX phase (120). In

order to differentiate all 120 bits, the vector is first divided into individual multi-bit

voters. To identify a specific bit, the Error Syndrome needs to specify the voter that

contains the error and the bit number in that voter. The total number of bits that can be

33

represented is then equal to the product of the number of voters and the number of bits.

For the EX phase, there are 12 voters with each voter monitoring 10 bits, so all 120 bits

of the phase are covered

c. FPGA Dependent TMR.

As discussed in [2], there are two major categories of FPGAs. The first

type use anti-fuses to configure the circuit on the FPGA. Once programmed, the FPGA

can not be reconfigured. The second type is Static Random Access Memory (SRAM)

based FPGA. In these types of FPGA’s the configuration is stored as bits in SRAM cells

with determine the detailed inner-connections of the FPGA components.

(1) Anti-fuse FPGA TMR. Since the configuration of an anti-fuse

FPGA permanently and physically alters the device, the configuration is not susceptible

to SEU’s. The most vulnerable part of the FPGA is the data stored in the internal

registers, so the architecture developed in this thesis with only the internal phase registers

triplicated and voted will provide adequate reliability. Figure 18 shows a schematic of a

full TMR architecture where internal registers are triplicated with their outputs applied to

voting circuits so that verified signals are provided to the rest of the circuit.

(2) SRAM FPGA TMR Since the configuration of an SRAM

FPGA is stored as bits in memory cells, the configuration itself is susceptible to SEUs.

This makes both the data of internal registers and the actual configuration vulnerable.

Additionally, since up to 91% of the memory elements on the chip store the

configuration, it is much more probable to have an SEU occur on a configuration bit [7].

To provide adequate reliability, all components implemented on an SRAM FPGA must

be triplicated. Figure 19 shows a schematic where all components (except for voters) are

triplicated. The output of each register is applied to voters. The output of the voter is then

applied to three copies of the combinatorial logic in each phase. Each copy of the logic

then is the input into the next phase register. Since SRAM FPGAs are used on the CFTP

circuit board, the full TMR implementation as shown in Figure 19 used in this thesis. An

architecture where the voters are also triplicated will be discussed in the future work

section of this thesis.

34

3
C

op
ie

s
of

 IF
/ID

 R
eg

is
te

r

IF
/ID

 P
ha

se
 V

ot
er

3
C

op
ie

s
of

 ID
/E

X
R

eg
is

te
r

ID
/E

X
Ph

as
e

Vo
te

r

3
C

op
ie

s
of

 E
X/

M
EM

 R
eg

is
te

r

EX
/M

EM
 P

ha
se

 V
ot

er

M
EM

/W
B

Ph
as

e
Vo

te
r

M
EM

/W
B

R
eg

is
te

rs

ID
 P

ha
se

 L
og

ic

EX
 P

ha
se

Lo

gi
c

IF
 P

ha
se

 L
og

ic

Figure 18. Schematic of TMR Internal Phase Registers

35

IF
 P

ha
se

IF
/ID

 R
eg

ID
 P

ha
se

ID
/E

X
 R

eg

E
X

 P
ha

se

E
X

/M
E

M
 R

eg
M

E
M

/W
B

 R
eg

W
B

 P
ha

se

Figure 19. Schematic of Pix with Full TMR

36

C. CHAPTER SUMMARY
This chapter has described a simple voting circuit and then expanded the

functionality to the level that is used in the Pix Processor. Additionally, the architecture

of distributing the voting function to the output of the internal processor registers was

detailed. Finally, two separate architectures were illustrated. The first provides adequate

reliability for an anti-fuse based FPGA where the configuration is not susceptible to

SEUs and a second, where all of the internal components are triplicated in order to

provide added reliability to the complete FPGA configuration.

The next chapter describes the complete circuit implemented on the Experiment

FPGA of the CFTP circuit board. The components include the full Pix TMR architecture,

a triplicated memory block and a multiplexer to switch between outputting memory

words and Error Syndromes to the Control FPGA. Additionally, the circuit implemented

on the Control FPGA to interface with the Experiment FPGA will be described.

37

IV. THE COMPLETE TMR SYSTEM

A. PIX – TMR PROCESSOR
The complete TMR architecture utilizing the Pix processor illustrated previously

in Figure 19 was reduced to a single schematic symbol and is shown in Figure 20.

Figure 20. Schematic of Pix – TMR

Table 7 lists all the input and output signals for the unit.

38

Signal Name Direction Width (bits) Description
Data_in Input 32 Data fetched fom Data Memory
INTRPT Input 1 External Inturrpt signal
Instr Input 32 Instruction fetched from Instruction Memory
Stall_in Input 1 External Stall signal
R_set Input 1 External Reset signal
Clock_in Input 1 Clock signal
PC Output 32 Address to Instruction Memory
WR Output 1 Write enable signal to Data Memory
Rd Output 1 Read enable signal to Data Memory
Data_out Output 32 Data to be stored in Data Memery
Data_Addr Output 32 Address to Data Memory
Stall Output 1 Indication that processor is stalled
Err_sig Output 1 Indication that an Error was detected
ErrSyndrome Output 29 Error Syndrome

Table 7. Signals of Pix – TMR

B. COMPLETE EXPERIMENT FPGA CIRCUIT
After completing the Pix-TMR architecture, the goal was expanded to design a

complete system so that the triplicated processor system could be loaded on the

Experiment FPGA, have its operation verified and the resilience of the TMR architecture

in a radiation environment finally tested. Figure 21 shows the complete circuit

programmed on the Experiment FPGA of the CFTP circuit board. It includes the Pix-

TMR unit shown in Figure 20 and a memory unit which includes instructions for the Pix

processors to execute (described in more detail in the next section).

39

Timing
Registers

Output MUXPix - TMR
Clock divider

Memory Unit Error Syndrome
Generator

Figure 21. Complete Experiment FPGA Circuit

The schematic includes a clock divider used to divide the clock from 50 MHz, which is

the CFTP circuit board oscillator frequency, by 2, resulting in a 25 MHz clocking signal.

The circuit was designed to output two pieces of data, each consisting of 32 bits. The first

is the data being written to memory by a Store Word instruction and the other an Error

Syndrome developed when an error was detected. Due to the limited number of

connections between the Experiment and Control FPGAs, these two signals shared the

same connection pins by utilizing an output MUX. The Err_sig signal which indicated

that a valid Error Syndrome exists, switched the MUX so that the Error Syndrome is

outputted off the Experiment FPGA. This implementation also provided a priority to the

40

Error Syndrome such that if the processor is writing a value to memory (Wr signal

asserted) at the same time the Err_sig signal is asserted, the Error Syndrome is applied to

the output of the FPGA. The Error Syndrome was expanded from 29 to 32 bits by a unit

labeled the Error Syndrome Generator which concatenates three ones to the most-

significant bits of the Error Syndrome. This aids in the differentiation of the Error

Syndrome from Memory data. The Experiment FPGA indicates the presence of valid data

(memory data or Error Syndrome) to the Control FPGA through the Val_sig signal. It is

asserted by either the Wr signal or the Err_sig signal. Finally, proper signal

synchronization between the FPGA’s is maintained by storing all outgoing bits in a

register in the Experiment FPGA. This ensures that the signals are valid for one complete

clock cycle, giving the Control FPGA an opportunity to latch the data. Table 8 lists all the

input and output signals for the Experiment FPGA circuit.

Signal Name Direction Width (bits) Description
Rset Input 1 External Reset
Clk Input 1 Clock signal
Intrpt Input 1 External Interrupt signal
StlIn Input 1 External stall signal
Val_sig Output 1 Indication of valid data on output bus
Rd Output 1 Processor executing read process with memory
Stll Output 1 Indication that processor is stalled
tmr_out Output 32 Either memory data or Error Syndrome

Table 8. Experiment FPGA Signals.

C. MEMORY UNIT

As discussed previously, the Harvard architecture of the pipelined Pix processor

needs to accomplish two independent memory accesses in a single clock period. To

accomplish this, a Dual Port Block RAM memory module was implemented using the

Core Gen utility in the Xilinx ISE design program. Each memory cell in the block RAM

is 32-bits wide and the block contains 64 cells.

1. Test Program
The following is the test program stored in the Block RAM. The goal of the test

program was to have the Pix processors execute every instruction in the instruction set

and utilize every register in the register file in order to exercise every component in each

41

processor. If radiation caused an upset to the FPGA data or configuration, a thorough test

program would maximize the chance that the output would be affected.
 1 00000000 00000000 nop
 2 00000001 00002820 add r5, r0, r0
 3 00000002 00003020 add r6, r0, r0
 4 00000003 LOOP1:
 5 00000003 20017fff addi r1, r0, 0x00007fff
 6 00000004 00011020 add r2, r1, r0
 7 00000005 00011820 add r3, r1, r0
 8 00000006 00022100 sll r4, r2, 4
 9 00000007 24050001 addiu r5, r0, 1
 10 00000008 24c60001 addiu r6, r6, 1
 11 00000009 00a63820 add r7, r6, r5
 12 0000000a 00c74020 add r8, r7, r6
 13 0000000b 00e84820 add r9, r8, r7
 14 0000000c 00a95023 subu r10, r9, r5
 15 0000000d 012a5825 or r11, r10, r9
 16 0000000e 00ea6026 xor r12, r10, r7
 17 0000000f 394dfff6 xori r13, r10, 0x0000fff6
 18 00000010 00837027 nor r14, r3, r4
 19 00000011 01c47824 and r15, r4, r14
 20 00000012 20af0001 addi r15, r5, 1
 21 00000013 11e0ffef beq r15, r0, LOOP1
 22 00000014 35d0ffff ori r16, r14, 0x0000ffff
 23 00000015 307103c0 andi r17, r3, 0x000003c0
 24 00000016 00009020 add r18, r0, r0
 25 00000017 1412ffeb bne r0, r18, LOOP1
 26 00000018 000e9d03 sra r19, r14, 20
 27 00000019 000ea042 srl r20, r14, 1
 28 0000001a 0640ffe8 bltz r18, LOOP1
 29 0000001b 0184b804 sllv r23, r4, r12
 30 0000001c 0170c006 srlv r24, r16, r11
 31 0000001d 00aec82a slt r25, r14, r5
 32 0000001e 00aed02b sltu r26, r14, r5
 33 0000001f 2b3bffff slti r27, r25, -1
 34 00000020 2f3cffff sltiu r28, r25, -1
 35 00000021 0601ffe0 bgez r16, 2
 36 00000022 008ee825 or r29, r14, r4
 37 00000023 07a1ffde bgez r29, 2
 38 00000024 201e007f addi r30, r0, 0x0000007f
 39 00000025 001efe40 sll r31, r30, 25
 40 00000026 LOOP2:
 41 00000026 23ff0001 addi r31, r31, 1
 42 00000027 17e0fffe bne r31, r0, LOOP2
 43 00000028 0400ffda bltz r0, LOOP1
 44 00000029 0410ffd9 bltzal r0, LOOP1
 45 0000002a ac06003e sw r6, 62(r0)
 46 0000002b 08000003 j LOOP1

Another function of the test program was to communicate that the processor was

still operating normally by outputting a periodic and predictable value. This was

accomplished by first clearing the contents of register R6 (line 3), and then incrementing

the value in R6 (line 10) once during each program iteration. A four second delay was

implemented in lines 38 through 42, which finally ended in storing the value in R6 to

memory, simultaneously outputting the value from the Experiment FPGA. The last

instruction resets the Program Counter to jump back to address 3, so the processors

execute the program again. The net result was that at test commencement a value of zero

42

was outputted off the CFTP board and every four seconds the observed value was

incremented by one to prove continued processor operation.

2. Reliable Memory Unit
In order to add reliability to the memory unit, the RAM blocks implemented on

the FPGA were also triplicated. A simple voting circuit (no error detection signal or Error

Syndrome generation) was included. The outputs of the individual memory blocks were

applied to a 32-bit voter to reduce the chance that a single fault would cause erroneous

memory data to be applied to the processors. If there is not enough room on the FPGA to

hold three copies of the memory block, more complex but spatially efficient memory

error detection and corrections techniques could be used for example, Single Error

Correction, Double Error Detection (SECDED) Hamming codes.

D. CONTROL FPGA
As discussed previously, the function of the Control FPGA is to communicate

externally to the space craft Command and Data Handler (C&DH) utilizing a PC-104 bus

interface and to control the Experiment FPGA, specifically to configure, initialize and

receive data from it. The work covered by this thesis included the circuit implemented on

the Control FPGA which interfaced with the Experiment FPGA. Figure 22 shows a flow

diagram which describes the monitoring of signals and the flow of data.

Figure 22. FPGA Interface Data Flow Chart

43

The additional functions that the Control FPGA performed were to read back the

Experiment FPGA configuration every 30 seconds, compare it to the original

configuration data stored in Flash memory and print out any discrepancies. Additionally,

the Control FPGA reconfigured the Experiment FPGA if the Error-counter reached 128

errors [6].

E. CHAPTER SUMMARY
This chapter described the circuit implemented on the Experiment FPGA of the

CFTP circuit board. The circuit consisted of the complete Pix TMR unit, a triplicated and

voted memory unit and other components to exchange data with the Control FPGA.

Additionally, the interface circuit implemented in the Control FPGA was described.

The next chapter provides an analysis of the test result data from the proton beam

test performed at the University of California at Davis.

44

THIS PAGE INTENTIONALLY LEFT BLANK

45

V. RADIATION TEST OF PIX-TMR

A. PROTON RADIATION TEST
On November 15, 2005 the CFTP team conducted proton radiation tests using the

Isochronous Cyclotron at Crocker Nuclear Laboratory, University of California-Davis.

Figure 23 was produced using the CFTP Error Visualization Tool (EVT) developed at

Naval Postgraduate School [6]. The figure represents a small section of the test

performed. The first item displayed in the figure is the physical location of the

implemented Pix-TMR experiment circuit on the Virtex 2 FPGA. As described in [2], the

FPGA is composed of Configurable Logic Blocks (CLBs) that contain Look-Up-Tables

(LUTs), registers and reprogrammable routing controls (multiplexers). The CLBs are

shown as small pink squares. The other circuit components shown in the diagram are the

Programmable Interconnect Points (PIPs). These circuits provide the routing path used to

connect CLBs and Input Output Buffers (IOB). These are represented in the figure as

green plus-signs. The specific implementations and connections for all the CLBs and

PIPs are maintained as configuration data bits for the FPGA. The figure only shows that

CLBs and PIPs that are used for the Pix-TMR experiment implementation. All of the

unused CLBs and PIPs have configuration data bits which are equal to zero. From the

figure, it can be estimated that the implemented circuit utilizes approximately 25% of the

FPGA hardware. The other feature of the EVT is that induced faults are spatially shown

on the FPGA implementation. The configuration data is organized by specific blocks,

which allows the EVT to determine the location of the error. The figure illustrates that

approximately half of the faults (23 out of 50) occurred in areas that did not contain

configuration data for the experiment circuit. Additionally, since not all the components

of a CLB or PIP are used in the circuit implementation, even a fault occurring inside a

used CLB can have no effect to circuit operation.

46

Figure 23. Pix-TMR FPGA Test Visualization

B. EXPECTED RESULTS
Based on the design of the TMR system and the implementation of the circuit on

the FPGA, potential fault categories were formed based on their predicted effect on

circuit operation.

1. No Effect Faults
With the test program initialized and proper circuit operation verified

(incrementing output counter), the only way to verify that a fault occurs is by comparing

actual configuration data to a copy stored in Flash memory. These faults can occur in

areas where the CLBs are not part of the implementation. Another possible cause is an

error to the configuration data for an unused component inside a utilized CLB.

2. Total Failure Faults
After initial circuit operation is verified, a fault occurs that renders the experiment

circuit completely inoperable. If the Val_sig output is never asserted, no data from the

47

Experiment FPGA will be printed to the screen. This condition would be caused by a

configuration data fault to a circuit component that is not protected through triplication,

or any other mitigation technique. These elements are also known as single points of

failure. An example would be a fault to the configuration circuitry linking the output of a

voter to the next stage of the processor. In this case, all three copies of the combinatorial

logic would get identical faulty data. To further the example, if the data pertaining to the

Instruction Register were permanently altered (voter output configuration changed), the

processor might continuously assume invalid instructions and insert NOPs in their place.

3. TMR Mitigated Faults
After initial circuit operation is verified, a fault occurs in one copy of a triplicated

circuit. The faulty data is voted out as the operation of the processor continues

uninterrupted. Simultaneously, an error report is generated which specifies the

mismatching processor, phase and bit.

C. TEST DATA REPORTS ANALYSIS
The output format from the CFTP circuit board consisted of two lines per report.

The first consists of a time indication including hour, minute and second. The second

line lists the error counter value (Errcnt) and either the data being written to memory

(mem data: incrementing value) or an Error Syndrome (signaled with ***ERROR).

1. Test Data Section A
The following is a portion of the test output during the radiation test. The first

output is generated at time 22:07:09. Due to an unexplained flaw, the error counter

initialized to 1. Lines 1 through 4 of the output shows that the four-second iteration of

the instructions loaded in the block RAM is functioning properly. Lines six and eight

report the Error Syndrome: e4808008. This decodes to: Processor C, EX phase, bit 12 of

the ALU B input. Both of these reports occur during the time 22:07:13. The operation of

the experiment continues correctly as verified by the correct memory data output in line

10. This pattern of two Error Syndromes continues for the next eight seconds, but the

number being written to memory (incremented counter) is incorrect. Curiously, in line

28 the incremented data being sent to memory regains proper sequence based on the

original timing and data value. At time 22:07:25, the Error Syndrome: e8a3c3ff is

reported. This decodes to Processor B, EX Phase, but includes errors in two voters. The

48

mismatched bits could belong to Destination Register, bits 9-0, or ALU B input, bits 31-

0, or some combination of both. The precise source of the bits in error is lost due to the

compression caused by encoding 984 bits into 29. Additionally, the fact that several

different bits are mismatched is a unique manifestation of configuration bit errors. A

single bit error in the configuration data does equate to just a single bit error in the

processor data. The number of bits in error is also dependent on the data being processed.

For example, if the configuration error disabled a 32-bit register, the attempted loading of

value ffffffff (hex) would result 32 bit errors, while loading of value 00000001 (hex)

would result in a single bit error.
1. 22:07:09
2. Errcnt: 01 mem data: 00000001
3. 22:07:13
4. Errcnt: 01 mem data: 00000002
5. 22:07:13
6. ***ERROR: Errcnt: 01 mem data: e4808008
7. 22:07:13
8. ***ERROR: Errcnt: 02 mem data: e4808008
9. 22:07:17
10. Errcnt: 03 mem data: 00000003
11. 22:07:17
12. ***ERROR: Errcnt: 03 mem data: e4808008
13. 22:07:17
14. ***ERROR: Errcnt: 04 mem data: e4808008
15. 22:07:21
16. Errcnt: 05 mem data: 00000003
17. 22:07:21
18. ***ERROR: Errcnt: 05 mem data: e4808008
19. 22:07:21
20. ***ERROR: Errcnt: 06 mem data: e4808008
21. 22:07:25
22. Errcnt: 07 mem data: 00000003
23. 22:07:25
24. ***ERROR: Errcnt: 07 mem data: e8a3c3ff
25. 22:07:26
26. Errcnt: 08 mem data: 00000004
27. 22:07:30
28. Errcnt: 08 mem data: 00000007
29. 22:07:30
30. ***ERROR: 01 Errcnt: 08 mem data: e8a3c3ff
31. 22:07:34
32. Errcnt: 09 mem data: 00000008
33. 22:07:34
34. ***ERROR: 01 Errcnt: 09 mem data: e8a3c3ff
35. 22:07:38
36. Errcnt: 0a mem data: 00000009
37. 22:07:38
38. ***ERROR: 01 Errcnt: 0a mem data: e8a3c3ff
39. 22:07:42
40. Errcnt: 0b mem data: 0000000a
41. 222:07:42
42. ***ERROR: 01 Errcnt: 0b mem data: e8a3c3ff
43. 22:07:46
44. Errcnt: 0c mem data: 0000000b
45. 22:07:46
46. ***ERROR: 01 Errcnt: 0c mem data: e8a3c3ff
47. 22:07:50
48. Errcnt: 0d mem data: 0000000c
49 .22:07:50
50. ***ERROR: 01 Errcnt: 0d mem data: e8a3c3ff

49

51. 22:07:50
52. Errcnt: 0e mem data: 0000000d
53. 22:07:54
54. Errcnt: 0e mem data: 00000010

2. Test Data Section B
The configuration errors reported in the previous section fall into the category of

TMR mitigated faults, in that the processors continued to operate (with some output

errors). The next section of data results also fall into this category, but operation of the

circuit cannot be verified because errors were being discovered too frequently (possibly

every clock cycle). The operation of the voters and the output circuit implies that the

system on the FPGA is still functional. Lines 1 through 34 show the last 16 errors

reported before the Control FPGA initiated a reconfiguration. All the reports shown

below take place within a single second (time 22:06:42). If the reports generated at time

22:06:41 (one second earlier) were included, a total of 51 errors were reported in less

than two seconds.
1. 22:06:42
2. ***ERROR: 01 Errcnt: 6f mem data: e0800080
3. 22:06:42
4. ***ERROR: 01 Errcnt: 70 mem data: e0800080
5. 22:06:42
6. ***ERROR: 01 Errcnt: 71 mem data: f0807bff
7. 22:06:42
8. ***ERROR: 01 Errcnt: 72 mem data: f0807bff
9. 22:06:42
10. ***ERROR: 01 Errcnt: 73 mem data: f0807bff
11. 22:06:42
12. ***ERROR: 01 Errcnt: 74 mem data: e0800080
13. 22:06:42
14. ***ERROR: 01 Errcnt: 75 mem data: e0800080
15. 22:06:42
16. ***ERROR: 01 Errcnt: 76 mem data: e0800080
17. 22:06:42
18. ***ERROR: 01 Errcnt: 77 mem data: e0800080
19. 22:06:42
20. ***ERROR: 01 Errcnt: 78 mem data: e0800080
21. 22:06:42
22. ***ERROR: 01 Errcnt: 79 mem data: f08063f1
23. 22:06:42
24. ***ERROR: 01 Errcnt: 7a mem data: e0800080
25. 22:06:42
26. ***ERROR: 01 Errcnt: 7b mem data: e0800080
27. 22:06:42
28. ***ERROR: 01 Errcnt: 7c mem data: e0800080
29. 22:06:42
30. ***ERROR: 01 Errcnt: 7d mem data: e0800080
31. 22:06:42
32. ***ERROR: 01 Errcnt: 7e mem data: e0800080
33. 22:06:42
34. ***ERROR: 01 Errcnt: 7f mem data: f0807bff

50

3. Test Data Section C
The final section of test data indicates a fault that has elements from two of the

categories previously listed. Processor operation is verified by the output consisting of

data being incremented and being written to memory, however, some values are missing.

The operation also deviates from expected behavior because all of the output values

occur at time 22:08:26, instead of every four seconds. The cause of this behavior may be

from a configuration error to the clock divider circuit, with is not protected by any fault

mitigation technique. The missing incrementing counter values (i.e. 0000001d,

00000020) were possibly lost due to a buffer overload situation in the PC-104 interface.

22:08:26
Errcnt: 16 mem data: 0000001c
22:08:26
Errcnt: 16 mem data: 0000001f
22:08:26
Errcnt: 16 mem data: 00000021
22:08:26
Errcnt: 16 mem data: 00000023
22:08:26
Errcnt: 16 mem data: 00000025
22:08:26
Errcnt: 16 mem data: 00000028
22:08:26
Errcnt: 16 mem data: 0000002c

4. Test Data Section D
Faults pertaining to the second category (total system failure) were also observed.

The only indication on the screen was the configuration data comparison performed every

30 seconds (controlled by the Control FPGA). In between the comparison there was no

output of either memory data or Error Syndrome.

D. TEST DATA ANALYSIS
In total, the test data indicates that a total of 518 faults were induced by radiation.

Of those faults, 64 affected CLBs utilized by the circuit configuration (12.4%). Eighteen

unique Error Syndromes were generated by the voting system and at least three more

errors affected circuit operation by changing the output behavior without producing an

error report (4.1%).

As indicated by the percentages, the No Effect Fault was most prevalent. This is a

function of the size of the circuit implemented. As the circuit is modified and expanded,

this percentage will go down.

51

The goal of the CFTP research is to reduce the number of Total Failure Faults by

converting them to Mitigated Faults, that is, have the error reported, but the circuit

operation continues unhampered. The limiting factors in the test were the way the error

reports were generated and then reported. A change to the error generating system so that

a report is outputted only if it is unique would have prevented an immediate FPGA

reconfiguration because the same error is causing an error report every clock cycle.

E. CHAPTER SUMMARY
This chapter described the results of the radiation test performed at the Crocker

Nuclear Laboratory, University of California-Davis. Categories of faults were listed

based on their affect on system operation. Examples were then given of the output data

from the Pix-TMR Experiment test and a fault analysis.

The next chapter provides a conclusion to the thesis and a recommendation for

continued work.

52

THIS PAGE INTENTIONALLY LEFT BLANK

53

VI. CONCLUSIONS AND RECOMMENDATIONS

This thesis described the design of the Pix processor, a five-stage, pipelined RISC

micro processor. The architecture of a Triple Modular Redundant system utilizing three

Pix processors and voter circuitry was then developed. Finally, Results from a radiation

test were analyzed and discussed.

A. SUMMARY
The Pix processor is a pipelined RISC processor based on the MIPS architecture

developed by Hennessy and Patterson [5]. Its data and address busses are both 32 bits

wide. It includes data forwarding to reduce the need to stall the processor when a data

hazard could potentially exist due to the pipelining process. Thirty-seven instructions are

implemented for the processor that include 12 arithmetic, 11 logical, eight branch, four

jump and two memory access. The processor also has the ability to jump to a pre-loaded

Interrupt Address and then return back to the last PC value upon an external Interrupt

initiation.

The Pix Processor is the central component to the TMR architecture developed in

this thesis. Instead of voting the output of the processor, a distributed voting system was

developed where voters are placed inside the processor, on the output of each of the

phase registers. This enables reliable processor operation (radiation induced faults

mitigated) without having to stall the processor to verify and correct the data in all the

internal registers. Additionally this voting system produces an Error Syndrome which

gives additional information pertaining to the fault.

Finally, the thesis describes the first radiation test performed on a TMR processor

system by the NPS CFTP research program. Effects of SEUs on circuit operation were

described that included unaffected circuit operation (SEU to configuration data not used

for the implemented circuit), mitigated faults (TMR architecture corrected the fault), and

faults that affected processor output ranging from slight output deviation to complete

system failure.

54

B. CONCLUSIONS
The design developed in this thesis reached or surpassed all the goals set at the

beginning of the research. A microprocessor was developed that expanded the

functionality of the KDLX processor used in the earlier stages of the CFTP research

program. The Pix processor was developed in a modular format which facilitates future

modifications and expansions. Additionally, an open source assembler for the DLX

processor was modified to convert standard assembly language to Pix machine code [6].

The TMR architecture changed the original design of voting processor external

outputs to a distributed function where the voting is accomplished at the processor

internal phase registers. This is an effective technique because errors are corrected as data

is being processed in the microprocessor.

The results from the radiation test gave insight to the relationship between

configuration bit faults and their effect on the implemented system operation. As

discussed previously, a single configuration bit error can have different manifestations in

the processor output. An additional benefit of the voter system is that the source of the

fault can be more easily ascertained (though still difficult), since the phase that the fault

occurred in can be deduced.

C. FOLLOW-ON RESEARCH
Each component of the Pix-TMR system can be expanded. First the Pix processor

can be improved. A math co-processor and instructions for floating point operations

could be added. Additionally supervisory mode instructions can be implemented to

facilitate interfacing the processor with an operating system.

The voting circuit and specifically the Error Syndrome generation can be

improved to give better data on the location of the originating SEU. A system where

Error Syndromes can be stored on the FPGA, for example, a block RAM could be

developed so that all reports are saved, and not lost due to a slow PC-104 interface. This

effort can be expanded to include changing the code on the Control FPGA that interfaces

with the Experiment FPGA.

As noted in the previous chapter, single points of failure still exist in the Pix-TMR

architecture. These weak points should be eliminated as much as possible. One method is

55

described in [8] where the voters are also triplicated, with the output of each voter

feeding only a single copy of the subsequent phase logic(also triplicated), as shown in

Figure 24. If one voter is compromised due to a configuration bit error, Correct data is

still outputted to the other copies of the logic. After the next phase of voting, all three

copies of logic will once again contain correct data (assuming no other faults occur).

A

B

C

VOTERS

PHASE
REGISTERS

NEXT PHASE
LOGIC

Processor
A

Processor
A

Processor
B

Processor
C

Processor
B

Processor
C

Figure 24. TMR With Triplicated Voters (After: [8])

Finally, continued testing with the CFTP Error Visualization and Injection Tool

and radiation tests needs to be performed to fully observe and understand the effect of

configuration bit errors on the operation of the circuit implemented on an FPGA.

Mitigation of all faults that would cause complete system failure is extremely difficult. A

process where the Control FPGA can detect a system failure (possibly using a watch-dog

timer) must be developed to initiate a system reconfiguration. This system should also

contain a feature which determines the last known state (i.e PC address) of the processor

and reinitialize it to continue from that state.

56

THIS PAGE INTENTIONALLY LEFT BLANK

57

APPENDIX A: PIX INSTRUCTION SET

This appendix lists all of the instructions implemented for the Pix processor.

Instruction Format Syntax Desciption

ADD R ADD rd, rs, rt

Add word: The word value in general register rt is added to the word value in general register
rs and the result is placed into general register rd . If the addition results in 32-bit 2's
complement arithmetic overflow, the overflow flag is set.

ADDI I ADDI rt,rs, immediate

Add Immediate Word: The 16 bit immediate is sign -extended and added to the contents of the
general register rs to form the result. The result is placed into general register rt .If the addition
results in 32-bit 2's complement arithmetic overflow, the overflow flag is set.

ADDIU I ADDIU rt, rs, immediate

Add Immediate Unsigned Word: The 16 bit immediate is sign-extended and added to the
contents of the general register rs to form the result. The result is placed into general register
rt . No integer overflow excetption occurs under any circumstances.

ADDU R ADDU rd, rs, rt

Add unsigned word: The word value in general register rt is added to the word value in general
register rs and the result is placed into general register rd. If the addition results in 32-bit 2's
complement arithmetic overflow, the overflow flag is not set.

AND R AND rd, rs, rt
And: The contents of general register rs are combined with the contents of general register rt in
a bit-wise logical AND operation. The result is placed into register rd.

ANDI I ANDI rt, rs, immediate
The 16 bit immediate is zero-extended and combined with the contents of general register rs in
a bit-wise logical AND operation. The result is placed into general register rt .

BEQ I BEQ rs, rt, offest

Branch On Equal: A branch target address is computed from the sum of the incremented PC
value and the sign-extended 16-bit offset . The contents of general registers rs and rt are
compared. If the two registers are equal, then the program branches to the target address.

BGEZ I BGEZ rs, offset

Branch On Greater Than Or Equal To Zero: A branch target address is computed from the sum
of the incremented PC value and the sign-extended 16-bit offset . If the contents of general
registers rs have the sign bit cleared, then the program branches to the target address.

BGEZAL I BGEZAL rs, offset

Branch On Greater Than Or Equal To Zero And Link: A branch target address is computed
from the sum of the incremented PC value and the sign-extended 16-bit offset . Unconditionally,
the address of the incremented PC is placed in the link register, r31 . If the contents of general
registers rs have the sign bit cleared, then the program branches to the target address.

BGTZ I BGTZ rs, offset

Branch On Greater Than Zero: A branch target address is computed from the sum of the
incremented PC value and the sign-extended 16-bit offset . If the contents of general register rs
have the sign bit cleared and are not equal to zero, then the program branches to the target
address.

BLEZ I BLEZ rs, offset

Branch On Less Than Or Equal To Zero: A branch target address is computed from the sum of
the incremented PC value and the sign-extended 16-bit offset . If the contents of general register
rs have the sign bit set or are equal to zero, then the program branches to the target address.

BLTZ I BLTZ rs, offest

Branch On Less Than Zero: A branch target address is computed from the sum of the
incremented PC value and the sign-extended 16-bit offset . If the contents of general register
rs have the sign bit set, then the program branches to the target address.

BLTZAL I BLTZAL rs, offest

Branch On Less Than Zero And Link: A branch target address is computed from the sum of the
incremented PC value and the sign-extended 16-bit offset . Unconditionally, the address of the
incremented PC is placed in the link register, r31 . If the contents of general register rs have the
sign bit set, then the program branches to the target address.

BNE I BNE rs, rt, offset

Branch On Not Equal: A branch target address is computed from the sum of the incremented
PC value and the sign-extended 16-bit offset . The contents of general registers rs and rt are
compared. If the two registers are not equal, then the program branches to the target address.

J J J target
Jump: The 26 bit target address is combined with the high-order 6 bits of the incremented PC.
The program unconditionally jumps to this calculated address.

JAL J JAL target

Jump: The 26 bit target address is combined with the high-order 6 bits of the incremented PC.
The program unconditionally jumps to this calculated address. The address of the incremented
PC is placed in the link register, r31 .

JALR R JALR rs; JALR rd,rs

Jump And Link Register: The program unconditionally jumps to the address contained in
general register rs. The address of the incremented PC is placed in general register rd . The
default value of rd , if omitted in the assembly language instruction is 31.

JR R JR rs
Jump Register: The program unconditionally jumps to the address contained in general register
rs.

58

LW I LW rt, offset(base)

Load Word: The 16 bit offset is sign-extended and added to the contents of general register
base to form a virtual addres. The contents of the word at the memory location specified by the
effective address are loaded into general register r.

NOR R NOR rd, rs, rt
Nor: The contents of general register rs are combined with the contents of general register rt in
a bit-wise logical NOR operation. The result is placed into register rd.

OR R OR rd, rs, rt
OR: The contents of general register rs are combined with the contents of general register rt in
a bit-wise logical OR operation. The result is placed into register rd.

ORI I ORI rt, rs, immediate

OR Immediate: The 16 bit immediate is zero-extended and combined with the contents of
general register rs in a bit-wise logical OR operation. The result is placed into general register
rt .

SLL R SLL rd, rt, sa
Shift Word Left Logical: The contents of the low-order word of general register rt are shifted
left by sa bits, inserting zeros into the low-order bits. The word result is placed in register rd .

SLLV R SLLV rd, rt, rs

Shift Word Left Logical Variable: The contents of the low-order word of general register rt are
shifted left by the low-order five bits contained in general register rs , inserting zeros into the
low-order bits. The word result is placed in register rd .

SLT R SLT rd, rs, rt

Set On Less Than: The contents of general register rt are subtracted from the contents of
general register rs . Considering both quantities as signed integers, if rs is less than the contents
of rt , the result is set to one; otherwise the result is set to zero. The result (one or zero) is
placed into general register rd .

SLTI I SLTI rt, rs, immediate

Set On Less Than Immediate: The 16-bit immediate is sign-extended and subtracted from the
contents of general register rs . Considering both quantities as signed integers, if rs is less than
the sign-extended immediate, the result is set to one; otherwise the result is set to zero. The
result (one or zero) is placed into general register rt .

SLTIU I SLTIU rt,rs, immediate

Set On Less Than Immediate Unsigned: The 16-bit immediate is sign-extended and subtracted
from the contents of general register rs . Considering both quantities as unsigned integers, if rs
is less than the sign-extended immediate, the result is set to one; otherwise the result is set to
zero. The result (one or zero) is placed into general register rt .

SLTU R SLTU rd, rs, rt

Set On Less Than Unsigned: The contents of general register rt are subtracted from the
contents of general register rs . Considering both quantities as unsigned integers, if rs is less
than the contents of rt , the result is set to one; otherwise the result is set to zero. The result (one
or zero) is placed into general register rd .

SRA R SRA rd, rt, sa
Shift Word Right Arithmetic: The contents of the low-order word of general register rt are
shifter right by sa bits, sign extending the high order bits. The result is placed in register rd.

SRAV R SRAV rd, rt, sa

Shift Word Right Arithmetic Variable: The contents of the low-order word of general register
rt are shifted right by the low-order five bits contained in general register rs , sign extending the
high-order bits. The word result is placed in register rd .

SRL R SRL rd, rt, sa
Shift Word Right Logical: The contents of the low-order word of general register rt are shifted
right by sa bits, inserting zeros into the high-order bits. The word result is placed in register rd .

SRLV R SRLV rd, rt, rs

Shift Word Right Logical Variable: The contents of the low-order word of general register rt
are shifted right by the low-order five bits contained in general register rs , inserting zeros into
the high-order bits. The word result is placed in register rd .

SUB R SUB rd, rs, rt

Subtract Word: The word value in general register rt is subtracted from the word value in
general register rs and the result is placed into general register rd . If the subtraction results in
32-bit 2's complement arithmetic overflow, the overflow flag is set.

SUBU R SUBU rd, rs, rt

Subtract Unsigned Word: The word value in general register rt is subtracted from the word
value in general register rs and the result is placed into general register rd. If the subtraction
results in 32-bit 2's complement arithmetic overflow, the overflow flag is not set.

SW I SW rt, offset(base)

Store Word: The 16 bit offset is sign-extended and added to the contents of general register
base to form a virtual addres. The contents of the word in general register rt are stored at the
memory location specified by the effective address.

XOR R OR rd, rs, rt
Exclusive OR: The contents of general register rs are combined with the contents of general
register rt in a bit-wise logical XOR operation. The result is placed into register rd.

XORI I XORI rt, rs, immediate

Exclusive OR Immediate: The 16 bit immediate is zero-extended and combined with the
contents of general register rs in a bit-wise logical XOR operation. The result is placed into
general register rt .

59

APPENDIX B: SCHEMATICS AND VHDL CODE

Appendix B contains all the schematics and VHDL code for components not

previously included

A PIX PROCESSOR

1. IF Phase Combinatorial Logic (pc_cl.sch)

2. Program Counter Incrementor (PC_inc.vhd)

entity PC_inc is
 Port (PC_in : in std_logic_vector(31 downto 0);
 PC_out : out std_logic_vector(31 downto 0));
end PC_inc;

architecture Behavioral of PC_inc is

begin
 process (PC_in)
 begin
 PC_out <= "00000000000000000000000000000000";
 PC_out <= PC_in + "00000000000000000000000000000001";
 end process;
end Behavioral;

3. Program Counter Multiplexer PC_mux.vhd)
entity PC_MUX is
 Port (Inc_PC : in std_logic_vector(31 downto 0);
 Brnch : in std_logic_vector(31 downto 0);
 Jump : in std_logic_vector(31 downto 0);
 Intrpt : in std_logic_vector(31 downto 0);

60

 Sel : in std_logic_vector(2 downto 0);
 Data_out : out std_logic_vector(31 downto 0));
end PC_MUX;

architecture Behavioral of PC_MUX is

begin
 process (Inc_PC, Brnch, Jump, Intrpt, Sel)
 begin
 Data_out <= "00000000000000000000000000000000";
 if Sel = "000" then Data_out <= Inc_PC;
 elsif Sel = "001" then Data_out <= Brnch;
 elsif Sel = "010" then Data_out <= Jump;
 else Data_out <= Intrpt;

 end if;
 end process;

end Behavioral;

B.. IF/ID REGISTER (PC_IR_REG.SCH)

 a. Instruction Register (instr_reg.vhd)
entity instr_reg is
 Port (Instr_in : in std_logic_vector(31 downto 0);
 Instr_LD : in std_logic;
 Reset : in std_logic;
 Rset_jmp : in std_logic;
 Rset_brnch : in std_logic;
 clk : in std_logic;
 -- I_out31_26 : out std_logic_vector(5 downto 0);
 -- I_out25_21 : out std_logic_vector(4 downto 0);
 -- I_out25_0 : out std_logic_vector(25 downto 0);

61

 -- I_out20_16 : out std_logic_vector(4 downto 0);
 -- I_out15_0 : out std_logic_vector(15 downto 0);
 -- I_out15_11 : out std_logic_vector(4 downto 0);
 -- I_out5_0 : out std_logic_vector(5 downto 0);
 -- I_out10_6 : out std_logic_vector(4 downto 0));
 I_out : out std_logic_vector(31 downto 0));
end instr_reg;

architecture Behavioral of instr_reg is

begin
 process(Instr_in, Instr_LD, Reset, Rset_jmp, Rset_brnch, clk)
 begin
 if (clk'event AND clk = '1')then
 if (reset = '1' OR Rset_jmp = '1' OR Rset_brnch = '1')
 then
-- I_out31_26 <= "000000";
-- I_out25_21 <= "00000";
-- I_out25_0 <= "00000000000000000000000000";
-- I_out20_16 <= "00000";
-- I_out15_0 <= "0000000000000000";
-- I_out15_11 <= "00000";
-- I_out5_0 <= "000000";
-- I_out10_6 <= "00000";
 I_out <= "00000000000000000000000000000000";
 elsif Instr_LD = '1'
 then
-- I_out31_26 <= Instr_in(31 downto 26);
-- I_out25_21 <= Instr_in(25 downto 21);
-- I_out25_0 <= Instr_in(25 downto 0);
-- I_out20_16 <= Instr_in(20 downto 16);
-- I_out15_0 <= Instr_in(15 downto 0);
-- I_out15_11 <= Instr_in(15 downto 11);
-- I_out5_0 <= Instr_in(5 downto 0);
-- I_out10_6 <= Instr_in(10 downto 6);
 I_out <= Instr_in;
 end if;
 end if;
 end process;

end Behavioral;

1. ID Phase Combinatorial Logic

a. Branch Address Adder (br_addr_adder.vhd)
entity Br_Addr_Adder is
 Port (PC_Addr : in std_logic_vector(31 downto 0);
 Br_Offset : in std_logic_vector(31 downto 0);
 Br_Addr : out std_logic_vector(31 downto 0));
end Br_Addr_Adder;

architecture Behavioral of Br_Addr_Adder is

begin

62

 process (PC_Addr, Br_Offset)
 begin
 Br_Addr <= (PC_Addr + Br_Offset);
 end process;
end Behavioral;
b. Comparator (comparator.vhd)
entity Comparator is
 Port (In_A : in std_logic_vector(31 downto 0);
 In_B : in std_logic_vector(31 downto 0);
 A_equal_B : out std_logic;
 A_GEZ : out std_logic;
 A_GTZ : out std_logic;
 A_LTZ : out std_logic);
end Comparator;

architecture Behavioral of Comparator is

begin
 process (In_A, In_B)
 begin
 A_equal_B <= '0';
 A_GEZ <= '0';
 A_GTZ <= '0';
 A_LTZ <= '0';
 if In_A = In_B then A_equal_B <= '1';
 end if;
 if In_A(31) = '0' then A_GEZ <= '1';
 end if;

if ((In_A > "00000000000000000000000000000000") and (In_A(31) =
'0')) then A_GTZ <= '1';

 end if;
 if In_A(31) = '1' then A_LTZ <= '1';
 end if;
 end process;
end Behavioral;

c. Link Controller (link_control.vhd)
entity Link_Cntrl is
 Port (Reg_rd : in std_logic_vector(4 downto 0);
 Link : in std_logic;
 JALR : in std_logic;
 Link_Reg : out std_logic_vector(4 downto 0));
end Link_Cntrl;

architecture Behavioral of Link_Cntrl is

begin
 process (Link, JALR, Reg_rd)
 begin
 Link_Reg <= "00000";

 if ((Link = '1') AND (JALR = '1') AND (Reg_rd /= "00000")) OR
 (Link = '0') then

 Link_Reg <= Reg_rd;
 else

63

 Link_Reg <= "11111";
 end if;
 end process;
end Behavioral;

d. Main Controller (main_control.vhd)
entity Main_Control is
 Port (Opcode : in std_logic_vector(5 downto 0);
 Funct_Fld : in std_logic_vector(5 downto 0);
 Brnch_Type : in std_logic_vector(4 downto 0);
 Ovr_Flw : in std_logic;
 ALU_Op : out std_logic_vector(2 downto 0);
 RegDst : out std_logic;
 ALU_Src : out std_logic;
 MemRd : out std_logic;
 MemWrt : out std_logic;
 RegWrt : out std_logic;
 MemToReg : out std_logic;
 BNE : out std_logic;
 BEQ : out std_logic;
 BLEZ : out std_logic;
 BGEZ : out std_logic;
 BGEZAL : out std_logic;
 BGTZ : out std_logic;
 BLTZ : out std_logic;
 BLTZAL : out std_logic;
 JUMP : out std_logic;
 JALR : out std_logic;
 J_R : out std_logic;
 J_EPC : out std_logic;
 LINK : out std_logic;
 Logic_Imm : out std_logic;
 EX_flush : out std_logic);

end Main_Control;

architecture Behavioral of Main_Control is

begin
 process (Opcode, Funct_Fld, Brnch_Type, Ovr_Flw)
 begin
 ALU_Op <= "000";
 RegDst <= '0';
 ALU_Src <= '0';
 MemRd <= '0';
 MemWrt <= '0';
 RegWrt <= '0';
 MemToReg <= '0';
 BNE <= '0';
 BEQ <= '0';
 BLEZ <= '0';
 BGEZ <= '0';
 BGEZAL <= '0';
 BGTZ <= '0';

64

 BLTZ <= '0';
 BLTZAL <= '0';
 JUMP <= '0';
 JALR <= '0';
 J_R <= '0';
 J_EPC <= '0';
 LINK <= '0';
 Logic_Imm <= '0';
 EX_flush <= '0';

 if (Ovr_Flw = '1') then -- ALU Op resulted in Overflow
 EX_flush <= '1'; -- prevents result from

being written to "rd"
 end if;

if (Opcode = "001100" OR Opcode = "001101" OR Opcode =
"001110") then

Logic_Imm <= '1'; -- ANDI, ORI, XORI (needed for sign
xtndr)

 end if;

 case Opcode is
 when "000000" => -- R type instruction
 ALU_Op <= "010";
 RegDst <= '1';
 ALU_Src <= '0';
 MemRd <= '0';
 MemWrt <= '0';

 RegWrt <= '1';
 MemToReg <= '0';
 case Funct_Fld is
 when "001000" =>
 J_R <= '1'; -- J_R instruction (0/8)
 JUMP <= '1';
 when "001001" =>
 LINK <= '1'; -- JALR instruction (0/9)
 JALR <= '1';
 JUMP <= '1';
 when "001010" =>
 J_EPC <= '1'; -- J_EPC instruction (0/10)
 JUMP <= '1';
 when others => null;
 end case;

 when "000001" => -- PC relative Branch
 ALU_Op <= "000";
 RegDst <= '0';
 ALU_Src <= '1';
 MemRd <= '0';
 MemWrt <= '0';
 RegWrt <= '1';
 MemToReg <= '0';
 case Brnch_Type is
 when "00000" =>
 BLTZ <= '1';

65

 when "00001" =>
 BGEZ <= '1';
 when "10000" =>
 BLTZAL <= '1';
 LINK <= '1';
 RegDst <= '1';
 when "10001" =>
 BGEZAL <= '1';
 LINK <= '1';
 RegDst <= '1';
 when others => null;
 end case;
 when "000010" => -- J (jump) (2)
 ALU_Op <= "000";
 RegDst <= '0';
 ALU_Src <= '0';
 MemRd <= '0';
 MemWrt <= '0';
 RegWrt <= '0';
 MemToReg <= '0';
 JUMP <= '1';
 when "000011" => -- JAL (jump & link) (3)
 ALU_Op <= "000";
 RegDst <= '1';
 ALU_Src <= '0';
 MemRd <= '0';
 MemWrt <= '0';
 RegWrt <= '1';
 MemToReg <= '0';
 JUMP <= '1';
 LINK <= '1';
 when "000100" => -- BEQ (4)
 ALU_Op <= "000";
 RegDst <= '0';
 ALU_Src <= '0';
 MemRd <= '0';
 MemWrt <= '0';
 RegWrt <= '0';
 MemToReg <= '0';
 BEQ <= '1';
 when "000101" => -- BNE (5)
 ALU_Op <= "000";
 RegDst <= '0';
 ALU_Src <= '0';
 MemRd <= '0';
 MemWrt <= '0';
 RegWrt <= '0';
 MemToReg <= '0';
 BNE <= '1';
 when "000110" => -- BLEZ (6)
 ALU_Op <= "000";
 RegDst <= '0';
 ALU_Src <= '0';
 MemRd <= '0';
 MemWrt <= '0';
 RegWrt <= '0';

66

 MemToReg <= '0';
 BLEZ <= '1';
 when "000111" => -- BGTZ (7)
 ALU_Op <= "000";
 RegDst <= '0';
 ALU_Src <= '0';
 MemRd <= '0';
 MemWrt <= '0';
 RegWrt <= '0';
 MemToReg <= '0';
 BGTZ <= '1';
 when "001000" => -- ADDI (8)
 ALU_Op <= "011";
 RegDst <= '0';
 ALU_Src <= '1';
 MemRd <= '0';
 MemWrt <= '0';
 RegWrt <= '1';
 MemToReg <= '0';
 when "001001" => -- ADDIU (9)
 ALU_Op <= "000";
 RegDst <= '0';
 ALU_Src <= '1';
 MemRd <= '0';
 MemWrt <= '0';
 RegWrt <= '1';
 MemToReg <= '0';
 when "001010" => -- SLTI (10)
 ALU_Op <= "111";
 RegDst <= '1';
 ALU_Src <= '1';
 MemRd <= '0';
 MemWrt <= '0';
 RegWrt <= '1';
 MemToReg <= '0';
 when "001011" => -- SLTIU (11)
 ALU_Op <= "111";
 RegDst <= '1';
 ALU_Src <= '1';
 MemRd <= '0';
 MemWrt <= '0';
 RegWrt <= '1';
 MemToReg <= '0';
 when "001100" => -- ANDI (12)
 ALU_Op <= "100";
 RegDst <= '0';
 ALU_Src <= '1';
 MemRd <= '0';
 MemWrt <= '0';
 RegWrt <= '1';
 MemToReg <= '0';
 when "001101" => -- ORI (13)
 ALU_Op <= "101";
 RegDst <= '0';
 ALU_Src <= '1';
 MemRd <= '0';

67

 MemWrt <= '0';
 RegWrt <= '1';
 MemToReg <= '0';
 when "001110" => -- XORI (14)
 ALU_Op <= "110";
 RegDst <= '0';
 ALU_Src <= '1';
 MemRd <= '0';
 MemWrt <= '0';
 RegWrt <= '1';
 MemToReg <= '0';
 when "100011" => -- LW (35)
 ALU_Op <= "000";
 RegDst <= '0';
 ALU_Src <= '1';
 MemRd <= '1';
 MemWrt <= '0';
 RegWrt <= '1';
 MemToReg <= '1';
 when "101011" => -- SW (43)
 ALU_Op <= "000";
 RegDst <= '0';
 ALU_Src <= '1';
 MemRd <= '0';
 MemWrt <= '1';
 RegWrt <= '0';
 MemToReg <= '0';

 when others => null;
 end case;
 end process;
end Behavioral;

e. Register File (regiser_file.sch)

68

2. EX/MEM Phase Register

3. EX Phase Combinatorial Logic

a. ALU Control (alu_cntrl.vhd)

-- ALU controller

-- Rev date 17May05

-- Function: Module deodes the ALU Op field of the instruction. Depending
-- on the contents, the proper operation signal is asserted. If

69

-- the field contents is "010", the Function feild is decoded
-- to determine proper operation signal to ALU.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity ALU_cntrl is

 Port (Funct_Fld : in std_logic_vector(5 downto 0);
 ALU_Op : in std_logic_vector(2 downto 0);
 ADD : out std_logic;
 ANDc : out std_logic;
 ORc : out std_logic;
 XORc : out std_logic;
 NORc : out std_logic;
 SLT : out std_logic;
 SUB : out std_logic;
 Arith_Shft : out std_logic;
 Shift : out std_logic;
 Lft_Shft : out std_logic;
 Signed : out std_logic);

end ALU_cntrl;

architecture Behavioral of ALU_cntrl is

begin
 process(Funct_Fld, ALU_Op)
 begin
 ADD <= '0';
 ANDc <= '0';
 ORc <= '0';
 XORc <= '0';
 NORc <= '0';
 SLT <= '0';
 SUB <= '0';
 Arith_Shft <= '0';
 Shift <= '0';
 Lft_Shft <= '0';
 Signed <= '0';

 case ALU_Op is
 when "000" => ADD <= '1'; -- ADD

for LW, SW, ADDI or ADDIU instr
 when "001" => SUB <= '1'; -- SUB for Branch
 when "011" => ADD <= '1';
 Signed <= '1'; -- allow Over Flow
 when "100" => ANDc <= '1'; -- ANDI instr
 when "101" => ORc <= '1'; -- ORI instr
 when "110" => XORc <= '1'; -- XORI instr
 when "111" => SLT <= '1'; -- SLTI or SLTIU instr
 when "010" => -- R

type instr =>

70

case Funct_Fld is --
look at Function Field

 when "100000" => ADD <= '1'; -- 32
 Signed <= '1'; -- allow Over Flow

 when "100001" => ADD <= '1';
 -- 33 ADDU

 when "100010" => SUB <= '1'; -- 34
 Signed <= '1'; -- allow

Over Flow
 when "100011" => SUB <= '1'; -- 35 SUBU
 when "100100" => ANDc <= '1'; -- 36
 when "100101" => ORc <= '1'; -- 37
 when "100110" => XORc <= '1'; -- 38
 when "100111" => NORc <= '1'; -- 39
 when "101011" => SLT <= '1'; -- 42

when "101010" => SLT <= '1'; -- 43
SLTU

 when "000000" => Lft_Shft <= '1'; -- 00
 Shift <= '1';
 when "000010" => Shift <= '1'; -- 02
 when "000011" => Arith_Shft <= '1'; -- 03
 Shift <= '1';
 when "000100" => Lft_Shft <= '1'; -- 04
 Shift <= '1';
 when "000110" => Shift <= '1'; -- 06
 when "000111" => Arith_Shft <= '1'; -- 07
 Shift <= '1';
 when others => null;
 end case;
 when others => null;
 end case;
 end process;

end Behavioral;

b. ALU Shell (super_alu.vhd)

71

c. ALU-32 bit (alu_32.vhd)
entity ALU_32 is
 Port (A_in : in std_logic_vector(31 downto 0);
 B_in : in std_logic_vector(31 downto 0);
 Cntrl_AND : in std_logic;
 Cntrl_OR : in std_logic;
 Cntrl_XOR : in std_logic;
 Cntrl_NOR : in std_logic;
 Cntrl_ADD : in std_logic;
 Cntrl_SUB : in std_logic;
 Cntrl_SLT : in std_logic;
 C_out : out std_logic_vector(31 downto 0));
end ALU_32;

architecture Behavioral of ALU_32 is

begin
 process (A_in, B_in, Cntrl_AND, Cntrl_OR, Cntrl_XOR, Cntrl_NOR,
 Cntrl_ADD, Cntrl_SUB, Cntrl_SLT)
 begin
 C_out <= "00000000000000000000000000000000" ;
 if (Cntrl_AND = '1') then C_out <= (A_in and B_in);
 elsif (Cntrl_OR = '1') then C_out <= (A_in or B_in);
 elsif (Cntrl_XOR = '1') then C_out <= (A_in xor B_in);
 elsif (Cntrl_NOR = '1') then C_out <= (A_in nor B_in);
 elsif (Cntrl_ADD = '1') then C_out <= (A_in + B_in);
 elsif (Cntrl_SUB = '1') then C_out <= (A_in - B_in);
 elsif (Cntrl_SLT = '1' and A_in < B_in) then
 C_out <= "00000000000000000000000000000001" ;
 elsif (Cntrl_SLT = '1' and A_in > B_in) then

72

 C_out <= "00000000000000000000000000000000" ;
 elsif (Cntrl_SLT = '1' and A_in = B_in) then
 C_out <= "00000000000000000000000000000000" ;
 end if;
 end process;

end Behavioral;

d. Shifter (Shifter.sch)

e. Shift_8bit(Shift_8.vhd)
entity shifter_8 is
 Port (Shftr_8_in : in std_logic_vector(31 downto 0);
 Shftr_8_sel : in std_logic;
 left_shft : in std_logic;
 Arith_shft : in std_logic;
 Shftr_8_out : out std_logic_vector(31 downto 0));

end shifter_8;

architecture Behavioral of shifter_8 is

begin
 process(Shftr_8_in, Shftr_8_sel, left_shft, Arith_Shft)
 begin
 if Shftr_8_sel = '1' then
 if left_shft = '1' then -- Shift Left Logical
 Shftr_8_out(31 downto 8) <= Shftr_8_in(23 downto 0);
 Shftr_8_out(7 downto 0) <= "00000000";
 elsif Arith_shft = '1' then -- Shift Right Arithmatic
 Shftr_8_out(23 downto 0) <= Shftr_8_in(31 downto 8);
 if Shftr_8_in(31) = '1' then

73

Shftr_8_out(31 downto 24) <= "11111111"; -- sra for
negative value

else Shftr_8_out(31 downto 24) <= "00000000"; -- sra
for positive value

 end if;
else Shftr_8_out(23 downto 0) <= Shftr_8_in(31 downto

8); -- Shift Right Logical
 Shftr_8_out(31 downto 24) <= "00000000";
 end if;
 else Shftr_8_out <= Shftr_8_in;
 end if;
 end process;

end Behavioral;

f. Overflow Circuit(zero_ovrflw.vhd.vhd)
entity Zero_OvrFlw is
 Port (A_in : in std_logic;
 B_in : in std_logic;
 C_in : in std_logic_vector (31 downto 0);
 Signed : in std_logic;
 Ovr_Flw : out std_logic);
end Zero_OvrFlw;

architecture Behavioral of Zero_OvrFlw is

begin
 process(A_in, B_in, C_in, Signed)
 begin
 Ovr_Flw <= '0';
 if (Signed = '1') then
 if ((A_in = '1') and (B_in = '1') and (C_in(31) = '0')) then
 Ovr_Flw <= '1';
 elsif ((A_in = '0') and (B_in = '0') and (C_in(31) = '1')) then
 Ovr_Flw <= '1';
 end if;
 end if;
 end process;
end Behavioral;

4. EX Phase Combinatorial Logic

74

75

APPENDIX C: CODE FOR DECODING ERROR SYNDROME

Variables (either integer or Boolean)

PhaseIF
PhaseEX
PhaseMEM
PhaseWB

ProcA
ProcB
ProcC

Begin

if ES(28) = '1' then ProcA = '1’;
if ES(27) = '1' then ProcB = '1';
if ES(26) = '1' then ProcC = '1';

if ES(25) = '1' then PhaseWB = '1';
if ES(24) = '1' then PhaseMEM = '1';
if ES(23) = '1' then PhaseEX = '1';
if ES(22) = '1' then PhaseIF = '1';

** Break down for WB Phase voters
if ES(25) AND ES(10) = '1' then ** voter 1
 begin
 if ES(0) = '1' then println("Mem_Data(0)");
 if ES(1) = '1' then println("Mem_Data(1)");
 if ES(2) = '1' then println("Mem_Data(2)");
 if ES(3) = '1' then println("Mem_Data(3)");
 if ES(4) = '1' then println("Mem_Data(4)");
 if ES(5) = '1' then println("Mem_Data(5)");
 if ES(6) = '1' then println("Mem_Data(6)");
 if ES(7) = '1' then println("Mem_Data(7)");
 if ES(8) = '1' then println("Mem_Data(8)");
 end;

 if ES(25) AND ES(11) = '1' then ** voter 2
 begin
 if ES(0) = '1' then println("Mem_Data(9)");
 if ES(1) = '1' then println("Mem_Data(10)");
 if ES(2) = '1' then println("Mem_Data(11)");
 if ES(3) = '1' then println("Mem_Data(12)");
 if ES(4) = '1' then println("Mem_Data(13)");
 if ES(5) = '1' then println("Mem_Data(14)");
 if ES(6) = '1' then println("Mem_Data(15)");
 if ES(7) = '1' then println("Mem_Data(16)");
 if ES(8) = '1' then println("Mem_Data(17)");
 end;

if ES(25) AND ES(12) = '1' then ** voter 3
 begin
 if ES(0) = '1' then println("Mem_Data(18)");

76

 if ES(1) = '1' then println("Mem_Data(19)");
 if ES(2) = '1' then println("Mem_Data(20)");
 if ES(3) = '1' then println("Mem_Data(21)");
 if ES(4) = '1' then println("Mem_Data(22)");
 if ES(5) = '1' then println("Mem_Data(23)");
 if ES(6) = '1' then println("Mem_Data(24)");
 if ES(7) = '1' then println("Mem_Data(25)");
 if ES(8) = '1' then println("Mem_Data(26)");
 end;

if ES(25) AND ES(13) = '1' then ** voter 4
 begin
 if ES(0) = '1' then println("Mem_Data(27)");
 if ES(1) = '1' then println("Mem_Data(28)");
 if ES(2) = '1' then println("Mem_Data(29)");
 if ES(3) = '1' then println("Mem_Data(30)");
 if ES(4) = '1' then println("Mem_Data(31)");
 if ES(5) = '1' then println("Reg_Data(0)");
 if ES(6) = '1' then println("Reg_Data(1)");
 if ES(7) = '1' then println("Reg_Data(2)");
 if ES(8) = '1' then println("Reg_Data(3)");
 end;

if ES(25) AND ES(14) = '1' then ** voter 5
 begin
 if ES(0) = '1' then println("Reg_Data(4)");
 if ES(1) = '1' then println("Reg_Data(5)");
 if ES(2) = '1' then println("Reg_Data(6)");
 if ES(3) = '1' then println("Reg_Data(7)");
 if ES(4) = '1' then println("Reg_Data(8)");
 if ES(5) = '1' then println("Reg_Data(9)");
 if ES(6) = '1' then println("Reg_Data(10)");
 if ES(7) = '1' then println("Reg_Data(11)");
 if ES(8) = '1' then println("Reg_Data(12)");
 end;

if ES(25) AND ES(15) = '1' then ** voter 6
 begin
 if ES(0) = '1' then println("Reg_Data(13)");
 if ES(1) = '1' then println("Reg_Data(14)");
 if ES(2) = '1' then println("Reg_Data(15)");
 if ES(3) = '1' then println("Reg_Data(16)");
 if ES(4) = '1' then println("Reg_Data(17)");
 if ES(5) = '1' then println("Reg_Data(18)");
 if ES(6) = '1' then println("Reg_Data(19)");
 if ES(7) = '1' then println("Reg_Data(20)");
 if ES(8) = '1' then println("Reg_Data(21)");
 end;

if ES(25) AND ES(16) = '1' then ** voter 7
 begin
 if ES(0) = '1' then println("Reg_Data(22)");
 if ES(1) = '1' then println("Reg_Data(23)");
 if ES(2) = '1' then println("Reg_Data(24)");
 if ES(3) = '1' then println("Reg_Data(25)");
 if ES(4) = '1' then println("Reg_Data(26)");

77

 if ES(5) = '1' then println("Reg_Data(27)");
 if ES(6) = '1' then println("Reg_Data(28)");
 if ES(7) = '1' then println("Reg_Data(29)");
 if ES(8) = '1' then println("Reg_Data(30)");
 end;

if ES(25) AND ES(17) = '1' then ** voter 8
 begin
 if ES(0) = '1' then println("Reg_Data(31)");
 if ES(1) = '1' then println("Reg_Sel(0)");
 if ES(2) = '1' then println("Reg_Sel(1)");
 if ES(3) = '1' then println("Reg_Sel(2)");
 if ES(4) = '1' then println("Reg_Sel(3)");
 if ES(5) = '1' then println("Reg_Sel(4)");
 if ES(6) = '1' then println("WB_cnrl(0)");
 if ES(7) = '1' then println("WB_cntrl(1)");
 end;

** Break down for MEM Phase voters
if ES(24) AND ES(10) = '1' then ** voter 1
 begin
 if ES(0) = '1' then println("Rd_out(0)");
 if ES(1) = '1' then println("Rd_out(1)");
 if ES(2) = '1' then println("Rd_out(2)");
 if ES(3) = '1' then println("Rd_out(3)");
 if ES(4) = '1' then println("Rd_out(4)");
 if ES(5) = '1' then println("Mem_Data(0)");
 if ES(6) = '1' then println("Mem_Data(1)");
 if ES(7) = '1' then println("Mem_Data(2)");
 if ES(8) = '1' then println("Mem_Data(3)");
 if ES(9) = '1' then println("Mem_Data(4)");
 end;

 if ES(24) AND ES(11) = '1' then ** voter 2
 begin
 if ES(0) = '1' then println("Mem_Data(5)");
 if ES(1) = '1' then println("Mem_Data(6)");
 if ES(2) = '1' then println("Mem_Data(7)");
 if ES(3) = '1' then println("Mem_Data(8)");
 if ES(4) = '1' then println("Mem_Data(9)");
 if ES(5) = '1' then println("Mem_Data(10)");
 if ES(6) = '1' then println("Mem_Data(11)");
 if ES(7) = '1' then println("Mem_Data(12)");
 if ES(8) = '1' then println("Mem_Data(13)");
 if ES(9) = '1' then println("Mem_Data(14)");
 end;

if ES(24) AND ES(12) = '1' then ** voter 3
 begin
 if ES(0) = '1' then println("Mem_Data(15)");
 if ES(1) = '1' then println("Mem_Data(16)");
 if ES(2) = '1' then println("Mem_Data(17)");
 if ES(3) = '1' then println("Mem_Data(18)");
 if ES(4) = '1' then println("Mem_Data(19)");
 if ES(5) = '1' then println("Mem_Data(20)");
 if ES(6) = '1' then println("Mem_Data(21)");

78

 if ES(7) = '1' then println("Mem_Data(22)");
 if ES(8) = '1' then println("Mem_Data(23)");
 if ES(9) = '1' then println("Mem_Data(24)");
 end;
if ES(24) AND ES(13) = '1' then ** voter 4
 begin
 if ES(0) = '1' then println("Mem_Data(25)");
 if ES(1) = '1' then println("Mem_Data(26)");
 if ES(2) = '1' then println("Mem_Data(27)");
 if ES(3) = '1' then println("Mem_Data(28)");
 if ES(4) = '1' then println("Mem_Data(29)");
 if ES(5) = '1' then println("Mem_Data(30)");
 if ES(6) = '1' then println("Mem_Data(31)");
 if ES(7) = '1' then println("ALU_Data(0)");
 if ES(8) = '1' then println("ALU_Data(1)");
 if ES(9) = '1' then println("ALU_Data(2)");
 end
if ES(24) AND ES(14) = '1' then ** voter 5
 begin
 if ES(0) = '1' then println("ALU_Data(3)");
 if ES(1) = '1' then println("ALU_Data(4)");
 if ES(2) = '1' then println("ALU_Data(5)");
 if ES(3) = '1' then println("ALU_Data(6)");
 if ES(4) = '1' then println("ALU_Data(7)");
 if ES(5) = '1' then println("ALU_Data(8)");
 if ES(6) = '1' then println("ALU_Data(9)");
 if ES(7) = '1' then println("ALU_Data(10)");
 if ES(8) = '1' then println("ALU_Data(11)");
 if ES(9) = '1' then println("ALU_Data(12)");
 end;

if ES(24) AND ES(15) = '1' then ** voter 6
 begin
 if ES(0) = '1' then println("ALU_Data(13)");
 if ES(1) = '1' then println("ALU_Data(14)");
 if ES(2) = '1' then println("ALU_Data(15)");
 if ES(3) = '1' then println("ALU_Data(16)");
 if ES(4) = '1' then println("ALU_Data(17)");
 if ES(5) = '1' then println("ALU_Data(18)");
 if ES(6) = '1' then println("ALU_Data(19)");
 if ES(7) = '1' then println("ALU_Data(20)");
 if ES(8) = '1' then println("ALU_Data(21)");
 if ES(9) = '1' then println("ALU_Data(22)");
 end;

if ES(24) AND ES(16) = '1' then ** voter 7
 begin
 if ES(0) = '1' then println("ALU_Data(23)");
 if ES(1) = '1' then println("ALU_Data(24)");
 if ES(2) = '1' then println("ALU_Data(25)");
 if ES(3) = '1' then println("ALU_Data(26)");
 if ES(4) = '1' then println("ALU_Data(27)");
 if ES(5) = '1' then println("ALU_Data(28)");
 if ES(6) = '1' then println("ALU_Data(29)");
 if ES(7) = '1' then println("ALU_Data(30)");
 if ES(8) = '1' then println("ALU_Data(31)");

79

 end;

if ES(24) AND ES(17) = '1' then ** voter 8
 begin
 if ES(0) = '1' then println("M_cntrl(31)");
 if ES(1) = '1' then println("M_cntrl(0)");
 if ES(2) = '1' then println("WB_cnrl(0)");
 if ES(3) = '1' then println("WB_cntrl(1)");
 end;

** Break down for EX Phase voters
if ES(23) AND ES(10) = '1' then ** voter 1
 begin
 if ES(0) = '1' then println("ID_EX_cntrl(0)");
 if ES(1) = '1' then println("ID_EX_cntrl(1)");
 if ES(2) = '1' then println("ID_EX_cntrl(2)");
 if ES(3) = '1' then println("ID_EX_cntrl(3)");
 if ES(4) = '1' then println("ID_EX_cntrl(4)");
 if ES(5) = '1' then println("ID_EX_cntrl(5)");
 if ES(6) = '1' then println("ID_EX_cntrl(6)");
 if ES(7) = '1' then println("ID_EX_cntrl(7)");
 if ES(8) = '1' then println("ID_EX_cntrl(8)");
 if ES(9) = '1' then println("ALU_A_1(0)");
 end;
 if ES(23) AND ES(11) = '1' then ** voter 2
 begin
 if ES(0) = '1' then println("ALU_A_1(1)");
 if ES(1) = '1' then println("ALU_A_1(2)");
 if ES(2) = '1' then println("ALU_A_1(3)");
 if ES(3) = '1' then println("ALU_A_1(4)");
 if ES(4) = '1' then println("ALU_A_1(5)");
 if ES(5) = '1' then println("ALU_A_1(6)");
 if ES(6) = '1' then println("ALU_A_1(7)");
 if ES(7) = '1' then println("ALU_A_1(8)");
 if ES(8) = '1' then println("ALU_A_1(9)");
 if ES(9) = '1' then println("ALU_A_1(10)");
 end;

if ES(23) AND ES(12) = '1' then ** voter 3
 begin
 if ES(0) = '1' then println("ALU_A(11)");
 if ES(1) = '1' then println("ALU_A(12)");
 if ES(2) = '1' then println("ALU_A(13)");
 if ES(3) = '1' then println("ALU_A(14)");
 if ES(4) = '1' then println("ALU_A(15)");
 if ES(5) = '1' then println("ALU_A(16)");
 if ES(6) = '1' then println("ALU_A(17)");
 if ES(7) = '1' then println("ALU_A(18)");
 if ES(8) = '1' then println("ALU_A(19)");
 if ES(9) = '1' then println("ALU_A(20)");
 end;

if ES(23) AND ES(13) = '1' then ** voter 4
 begin
 if ES(0) = '1' then println("ALU_A(21)");
 if ES(1) = '1' then println("ALU_A(22)");

80

 if ES(2) = '1' then println("ALU_A(23)");
 if ES(3) = '1' then println("ALU_A(24)");
 if ES(4) = '1' then println("ALU_A(25)");
 if ES(5) = '1' then println("ALU_A(26)");
 if ES(6) = '1' then println("ALU_A(27)");
 if ES(7) = '1' then println("ALU_A(28)");
 if ES(8) = '1' then println("ALU_A(29)");
 if ES(9) = '1' then println("ALU_A(30)");
 end;

if ES(23) AND ES(14) = '1' then ** voter 5
 begin
 if ES(0) = '1' then println("ALU_A(31)");
 if ES(1) = '1' then println("ALU_B(0)");
 if ES(2) = '1' then println("ALU_B(1)");
 if ES(3) = '1' then println("ALU_B(2)");
 if ES(4) = '1' then println("ALU_B(3)");
 if ES(5) = '1' then println("ALU_B(4)");
 if ES(6) = '1' then println("ALU_B(5)");
 if ES(7) = '1' then println("ALU_B(6)");
 if ES(8) = '1' then println("ALU_B(7)");
 if ES(9) = '1' then println("ALU_B(8)");
 end;

if ES(23) AND ES(15) = '1' then ** voter 6
 begin
 if ES(0) = '1' then println("ALU_B(9)");
 if ES(1) = '1' then println("ALU_B(10)");
 if ES(2) = '1' then println("ALU_B(11)");
 if ES(3) = '1' then println("ALU_B(12)");
 if ES(4) = '1' then println("ALU_B(13)");
 if ES(5) = '1' then println("ALU_B(14)");
 if ES(6) = '1' then println("ALU_B(15)");
 if ES(7) = '1' then println("ALU_B(16)");
 if ES(8) = '1' then println("ALU_B(17)");
 if ES(9) = '1' then println("ALU_B(18)");
 end;

if ES(23) AND ES(16) = '1' then ** voter 7
 begin
 if ES(0) = '1' then println("ALU_B(19)");
 if ES(1) = '1' then println("ALU_B(20)");
 if ES(2) = '1' then println("ALU_B(21)");
 if ES(3) = '1' then println("ALU_B(22)");
 if ES(4) = '1' then println("ALU_B(23)");
 if ES(5) = '1' then println("ALU_B(24)");
 if ES(6) = '1' then println("ALU_B(25)");
 if ES(7) = '1' then println("ALU_B(26)");
 if ES(8) = '1' then println("ALU_B(27)");
 if ES(9) = '1' then println("ALU_B(28)");
 end;

if ES(23) AND ES(17) = '1' then ** voter 8
 begin
 if ES(0) = '1' then println("ALU_B(29)");
 if ES(1) = '1' then println("ALU_B(30)");

81

 if ES(2) = '1' then println("ALU_B(31)");
 if ES(3) = '1' then println("Imm_ALU(0)");
 if ES(4) = '1' then println("Imm_ALU(1)");
 if ES(5) = '1' then println("Imm_ALU(2)");
 if ES(6) = '1' then println("Imm_ALU(3)");
 if ES(7) = '1' then println("Imm_ALU(4)");
 if ES(8) = '1' then println("Imm_ALU(5)");
 if ES(9) = '1' then println("Imm_ALU(6)");
 end;

if ES(23) AND ES(18) = '1' then ** voter 9
 begin
 if ES(0) = '1' then println("Imm_ALU(7)");
 if ES(1) = '1' then println("Imm_ALU(8)");
 if ES(2) = '1' then println("Imm_ALU(9)");
 if ES(3) = '1' then println("Imm_ALU(10)");
 if ES(4) = '1' then println("Imm_ALU(11)");
 if ES(5) = '1' then println("Imm_ALU(12)");
 if ES(6) = '1' then println("Imm_ALU(13)");
 if ES(7) = '1' then println("Imm_ALU(14)");
 if ES(8) = '1' then println("Imm_ALU(15)");
 if ES(9) = '1' then println("Imm_ALU(16)");
 end;

if ES(23) AND ES(19) = '1' then ** voter 10
 begin
 if ES(0) = '1' then println("Imm_ALU(17)");
 if ES(1) = '1' then println("Imm_ALU(18)");
 if ES(2) = '1' then println("Imm_ALU(19)");
 if ES(3) = '1' then println("Imm_ALU(20)");
 if ES(4) = '1' then println("Imm_ALU(21)");
 if ES(5) = '1' then println("Imm_ALU(22)");
 if ES(6) = '1' then println("Imm_ALU(23)");
 if ES(7) = '1' then println("Imm_ALU(24)");
 if ES(8) = '1' then println("Imm_ALU(25)");
 if ES(9) = '1' then println("Imm_ALU(26)");
 end;

if ES(23) AND ES(20) = '1' then ** voter 11
 begin
 if ES(0) = '1' then println("Imm_ALU(27)");
 if ES(1) = '1' then println("Imm_ALU(28)");
 if ES(2) = '1' then println("Imm_ALU(29)");
 if ES(3) = '1' then println("Imm_ALU(30)");
 if ES(4) = '1' then println("Imm_ALU(31)");
 if ES(5) = '1' then println("Imm_ALU(0)");
 if ES(6) = '1' then println("Imm_ALU(1)");
 if ES(7) = '1' then println("Shft_Amnt(2)");
 if ES(8) = '1' then println("Shft_Amnt(3)");
 if ES(9) = '1' then println("Shft_Amnt(4)");
 end;

if ES(23) AND ES(20) = '1' then ** voter 12
 begin
 if ES(0) = '1' then println("Dest_Reg(0)");
 if ES(1) = '1' then println("Dest_Reg(1)");

82

 if ES(2) = '1' then println("Dest_Reg(2)");
 if ES(3) = '1' then println("Dest_Reg(3)");
 if ES(4) = '1' then println("Dest_Reg(4)");
 if ES(5) = '1' then println("Dest_Reg(5)");
 if ES(6) = '1' then println("Dest_Reg(6)");
 if ES(7) = '1' then println("Dest_Reg(7)");
 if ES(8) = '1' then println("Dest_Reg(8)");
 if ES(9) = '1' then println("Dest_Reg(9)");
 end;

** Break down for IF Phase voters
if ES(22) AND ES(10) = '1' then ** voter 1
 begin
 if ES(0) = '1' then println("PC(0)");
 if ES(1) = '1' then println("PC(1)");
 if ES(2) = '1' then println("PC(2)");
 if ES(3) = '1' then println("PC(3)");
 if ES(4) = '1' then println("PC(4)");
 if ES(5) = '1' then println("PC(5)");
 if ES(6) = '1' then println("PC(6)");
 if ES(7) = '1' then println("PC(7)");
 if ES(8) = '1' then println("PC(8)");
 if ES(9) = '1' then println("PC(9)");
 end;

 if ES(22) AND ES(11) = '1' then ** voter 2
 begin
 if ES(0) = '1' then println("PC(10)");
 if ES(1) = '1' then println("PC(11)");
 if ES(2) = '1' then println("PC(12)");
 if ES(3) = '1' then println("PC(13)");
 if ES(4) = '1' then println("PC(14)");
 if ES(5) = '1' then println("PC(15)");
 if ES(6) = '1' then println("PC(16)");
 if ES(7) = '1' then println("PC(17)");
 if ES(8) = '1' then println("PC(18)");
 if ES(9) = '1' then println("PC(19)");
 end;

if ES(22) AND ES(12) = '1' then ** voter 3
 begin
 if ES(0) = '1' then println("PC(20)");
 if ES(1) = '1' then println("PC(21)");
 if ES(2) = '1' then println("PC(22)");
 if ES(3) = '1' then println("PC(23)");
 if ES(4) = '1' then println("PC(24)");
 if ES(5) = '1' then println("PC(25)");
 if ES(6) = '1' then println("PC(26)");
 if ES(7) = '1' then println("PC(27)");
 if ES(8) = '1' then println("PC(28)");
 if ES(9) = '1' then println("PC(29)");
 end;

if ES(22) AND ES(13) = '1' then ** voter 4
 begin
 if ES(0) = '1' then println("PC(30)");

83

 if ES(1) = '1' then println("PC(31)");
 if ES(2) = '1' then println("Inc_PC(0)");
 if ES(3) = '1' then println("Inc_PC(1)");
 if ES(4) = '1' then println("Inc_PC(2)");
 if ES(5) = '1' then println("Inc_PC(3)");
 if ES(6) = '1' then println("Inc_PC(4)");
 if ES(7) = '1' then println("Inc_PC(5)");
 if ES(8) = '1' then println("Inc_PC(6)");
 if ES(9) = '1' then println("Inc_PC(7)");
 end;

if ES(22) AND ES(14) = '1' then ** voter 5
 begin
 if ES(0) = '1' then println("Inc_PC(8)");
 if ES(1) = '1' then println("Inc_PC(9)");
 if ES(2) = '1' then println("Inc_PC(10)");
 if ES(3) = '1' then println("Inc_PC(11)");
 if ES(4) = '1' then println("Inc_PC(12)");
 if ES(5) = '1' then println("Inc_PC(13)");
 if ES(6) = '1' then println("Inc_PC(14)");
 if ES(7) = '1' then println("Inc_PC(15)");
 if ES(8) = '1' then println("Inc_PC(16)");
 if ES(9) = '1' then println("Inc_PC(17)");
 end;

if ES(22) AND ES(15) = '1' then ** voter 6
 begin
 if ES(0) = '1' then println("Inc_PC(18)");
 if ES(1) = '1' then println("Inc_PC(19)");
 if ES(2) = '1' then println("Inc_PC(20)");
 if ES(3) = '1' then println("Inc_PC(21)");
 if ES(4) = '1' then println("Inc_PC(22)");
 if ES(5) = '1' then println("Inc_PC(23)");
 if ES(6) = '1' then println("Inc_PC(24)");
 if ES(7) = '1' then println("Inc_PC(25)");
 if ES(8) = '1' then println("Inc_PC(26)");
 if ES(9) = '1' then println("Inc_PC(27)");
 end;

if ES(22) AND ES(16) = '1' then ** voter 7
 begin
 if ES(0) = '1' then println("Inc_PC(28)");
 if ES(1) = '1' then println("Inc_PC(29)");
 if ES(2) = '1' then println("Inc_PC(30)");
 if ES(3) = '1' then println("Inc_PC(31)");
 if ES(4) = '1' then println("Instr(0)");
 if ES(5) = '1' then println("Instr(1)");
 if ES(6) = '1' then println("Instr(2)");
 if ES(7) = '1' then println("Instr(3)");
 if ES(8) = '1' then println("Instr(4)");
 if ES(9) = '1' then println("Instr(5)");
 end;

if ES(22) AND ES(17) = '1' then ** voter 8
 begin
 if ES(0) = '1' then println("Instr(6)");

84

 if ES(1) = '1' then println("Instr(7)");
 if ES(2) = '1' then println("Instr(8)");
 if ES(3) = '1' then println("Instr(9)");
 if ES(4) = '1' then println("Instr(10)");
 if ES(5) = '1' then println("Instr(11)");
 if ES(6) = '1' then println("Instr(12)");
 if ES(7) = '1' then println("Instr(13)");
 if ES(8) = '1' then println("Instr(14)");
 if ES(9) = '1' then println("Instr(15)");
 end;

if ES(22) AND ES(18) = '1' then ** voter 9
 begin
 if ES(0) = '1' then println("Instr(16)");
 if ES(1) = '1' then println("Instr(17)");
 if ES(2) = '1' then println("Instr(18)");
 if ES(3) = '1' then println("Instr(19)");
 if ES(4) = '1' then println("Instr(20)");
 if ES(5) = '1' then println("Instr(21)");
 if ES(6) = '1' then println("Instr(22)");
 if ES(7) = '1' then println("Instr(23)");
 if ES(8) = '1' then println("Instr(24)");
 if ES(9) = '1' then println("Instr(25)");
 end;

if ES(22) AND ES(19) = '1' then ** voter 10
 begin
 if ES(0) = '1' then println("Instr(26)");
 if ES(1) = '1' then println("Instr(27)");
 if ES(2) = '1' then println("Instr(28)");
 if ES(3) = '1' then println("Instr(29)");
 if ES(4) = '1' then println("Instr(30)");
 if ES(5) = '1' then println("Instr(31)");
 end;

print out all variables = ‘1’;
pop stack until empty;
end;

85

LIST OF REFERENCES

1. Lashomb, Peter A., “Triple Modular Redundant (TMR) Microprocessor System
for Field Programmable gate Array (FPGA) Implementation,” Master’s Thesis,
Naval Postgraduate School, Monterey, California, March 2002.

2. Ebert, Dean A., “Design and Development of a Configurable Fault Tolerant
Processor (CFTP) for Space Applications,” Master’s Thesis, Naval Postgraduate
School, Monterey, California, June 2003.

3. Johnson, Steven A., “Implementation of a Configurable Fault Tolerant Processor
(CFTP),” Master’s Thesis, Naval Postgraduate School, Monterey, California,
March 2003.

4. Yuan, Rong, “Triple Modular Redundancy (TMR) in a Configurable Fault
Tolerant Processor (CFTP) for Space Applications, Master’s Thesis, Naval
Postgraduate School, Monterey, California, December 2003.

5. Hennessy, John L. and Patterson, David A., Computer Organization and Design,
The Hardware/Software Interface, Morgan Kaufmann, San Francisco, California,
1998.

6. Surratt, Mindy, “CFTP Development Environment Technical Manual”, Naval
Postgraduate School, Monterey California, December 2005.

7. Caffrey, Michael, Paul Graham, Eric Johnson, Michael Wirthlin, Nathan Rollins.
Carl Carmichael, “Single-Event Upsets in SRAM FPGAs,” Military and
Aerospace Applications of Programmable Logic Devices, September 2002.

8. Wakerly, John F,. “Microcomputer Reliability Improvement Using Triple-
Modular Redundancy”, Proceedings of the IEEE, Vol. 64, No. 6, June 1976.

86

THIS PAGE INTENTIONALLY LEFT BLANK

87

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Chairman, ECE Department, Knorr
Naval Postgraduate School
Monterey, California

4. Professor Herschel H. Loomis
Naval Postgraduate School
Monterey, California

5. Professor Alan A. Ross
Naval Postgraduate School
Monterey, California

6. Ms. Mindy Surratt
Naval Postgraduate School
Monterey, California

7. Mr. Tim Meehan
Naval Research Laboratory
Washington, DC

